Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730705

ABSTRACT

Outcomes for glioblastoma (GBM) remain poor despite standard-of-care treatments including surgical resection, radiation, and chemotherapy. Intratumoral heterogeneity contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. Drug repositioning studies on antiretroviral therapy (ART) have shown promising potent antineoplastic effects in multiple cancers; however, its efficacy in GBM remains unclear. To better understand the pleiotropic anticancer effects of ART on GBM, we conducted a comprehensive drug repurposing analysis of ART in GBM to highlight its utility in translational neuro-oncology. To uncover the anticancer role of ART in GBM, we conducted a comprehensive bioinformatic and in vitro screen of antiretrovirals against glioblastoma. Using the DepMap repository and reversal of gene expression score, we conducted an unbiased screen of 16 antiretrovirals in 40 glioma cell lines to identify promising candidates for GBM drug repositioning. We utilized patient-derived neurospheres and glioma cell lines to assess neurosphere viability, proliferation, and stemness. Our in silico screen revealed that several ART drugs including reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) demonstrated marked anti-glioma activity with the capability of reversing the GBM disease signature. RTIs effectively decreased cell viability, GBM stem cell markers, and proliferation. Our study provides mechanistic and functional insight into the utility of ART repurposing for malignant gliomas, which supports the current literature. Given their safety profile, preclinical efficacy, and neuropenetrance, ARTs may be a promising adjuvant treatment for GBM.

2.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37395282

ABSTRACT

Human endogenous retroviruses (HERVs) are ancestral viral relics that constitute nearly 8% of the human genome. Although normally silenced, the most recently integrated provirus HERV-K (HML-2) can be reactivated in certain cancers. Here, we report pathological expression of HML-2 in malignant gliomas in both cerebrospinal fluid and tumor tissue that was associated with a cancer stem cell phenotype and poor outcomes. Using single-cell RNA-Seq, we identified glioblastoma cellular populations with elevated HML-2 transcripts in neural progenitor-like cells (NPC-like) that drive cellular plasticity. Using CRISPR interference, we demonstrate that HML-2 critically maintained glioblastoma stemness and tumorigenesis in both glioblastoma neurospheres and intracranial orthotopic murine models. Additionally, we demonstrate that HML-2 critically regulated embryonic stem cell programs in NPC-derived astroglia and altered their 3D cellular morphology by activating the nuclear transcription factor OCT4, which binds to an HML-2-specific long-terminal repeat (LTR5Hs). Moreover, we discovered that some glioblastoma cells formed immature retroviral virions, and inhibiting HML-2 expression with antiretroviral drugs reduced reverse transcriptase activity in the extracellular compartment, tumor viability, and pluripotency. Our results suggest that HML-2 fundamentally contributes to the glioblastoma stem cell niche. Because persistence of glioblastoma stem cells is considered responsible for treatment resistance and recurrence, HML-2 may serve as a unique therapeutic target.


Subject(s)
Endogenous Retroviruses , Glioblastoma , Humans , Animals , Mice , Endogenous Retroviruses/genetics , Glioblastoma/genetics , Stem Cell Niche , Proviruses/genetics
3.
World Neurosurg ; 174: e35-e43, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36841537

ABSTRACT

OBJECTIVE: Increasing centralization of high-level neurosurgical practice at academic centers has increased the need for academic neurosurgeons. The lack of systematic metrics-based analyses among neurosurgery trainees and the recent pass/fail U.S. Medical Licensing Examination system necessitates a multiparametric approach to assess academic success among trainees. METHODS: We conducted a comprehensive analysis of the University of Miami residency program using 2 data sets, one containing applicants' pre-residency metrics and a second containing trainees' intra-residency metrics. Intra-residency metrics were subjectively and anonymously assessed by faculty. Univariate and multivariate logistic regression analyses were performed to determine differences among academic and non-academic neurosurgeons and identify predictors of academic careers. RESULTS: Academic neurosurgeons had a significantly higher median Step 1 percentile relative to non-academic neurosurgeons (P = 0.015), and medical school ranking had no significant impact on career (P > 0.05). Among intra-residency metrics, academic neurosurgeons demonstrated higher mean rating of leadership skills (mean difference [MD] 0.46, P = 0.0011), technical skill (MD 0.42, P = 0.006), and other intra-residency metrics. Higher administrative and leadership skills were significantly associated with increased likelihood of pursuing an academic career (odds ratio [OR] 9.03, 95% CI [2.296 to 49.88], P = 0.0044). Clinical judgment and clinical knowledge were strongly associated with pursuit of an academic career (OR 9.33 and OR 9.32, respectively, with P = 0.0060 and P = 0.0010, respectively). CONCLUSIONS: Pre-residency metrics had little predictive value in determining academic careers. Furthermore, medical school ranking does not play a significant role in determining a career in academic neurosurgery. Intra-residency judgment appears to play a significant role in career placement, as academic neurosurgeons were rated consistently higher than their non-academic peers in multiple key parameters by their attending physicians.


Subject(s)
Internship and Residency , Neurosurgery , Humans , Career Choice , Neurosurgery/education , Neurosurgeons , Schools, Medical
4.
Viruses ; 14(9)2022 09 12.
Article in English | MEDLINE | ID: mdl-36146825

ABSTRACT

Human endogenous retrovirus-K (HERV-K) is the most recently integrated retrovirus in the human genome, with implications for multiple disorders, including cancer. Although typically transcriptionally silenced in normal adult cells, dysregulation of HERV-K (HML-2) elements has been observed in cancer, including breast, germ cell tumors, pancreatic, melanoma, and brain cancer. While multiple methods of carcinogenesis have been proposed, here we discuss the role of HERV-K (HML-2) in the promotion and maintenance of the stem-cell in cancer. Aberrant expression of HERV-K has been shown to promote expression of stem cell markers and promote dedifferentiation. In this review, we discuss HERV-K (HML-2) as a potential therapeutic target based on evidence that some tumors depend on the expression of its proteins for survival.


Subject(s)
Endogenous Retroviruses , Melanoma , Adult , Endogenous Retroviruses/genetics , Genome, Human , Humans , Melanoma/genetics
5.
Neurooncol Adv ; 4(1): vdac095, 2022.
Article in English | MEDLINE | ID: mdl-35875691

ABSTRACT

Background: The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods: Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results: PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion: Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.

6.
J Neurooncol ; 159(3): 571-579, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35857248

ABSTRACT

INTRODUCTION: As lifespans for persons living with HIV (PLWH) have improved over the last decade, there has been a simultaneous increase in non-AIDS-related cancer in that group. However, there is a paucity of data regarding the incidence of glioblastoma multiforme (GBM) in PLWH. Better understanding of the oncogenesis, natural history, and treatment outcomes of GBM in PLWH should lead to improved treatment strategies. METHODS: We performed a comprehensive literature search of six electronic databases to identify eligible cases of GBM among PLWH. Kaplan-Meier estimates, Fisher's exact test, and logistic regression were used to interrogate the data. Epidemiologic data on global HIV prevalence was obtained from the 2016 UNAIDS incidence report, and CNS cancer incidence was obtained from the GDB 2016 Brain and Other CNS Cancer Collaborators. RESULTS: There is an inverse relationship between the incidence of HIV and CNS cancer globally. Median overall survival (OS) from GBM diagnosis was 8 months. Estimates for survival at 1 and 2 years were 28 and 5%, respectively. There were no statistically significant predictors of OS in this setting. There was a significant difference (p < 0.01) in OS in PLWH and GBM when compared to TCGA age matched cohorts. CONCLUSION: The diagnosis of GBM in PLWH is severely underreported in the literature. Despite maximal treatment, OS in this patient population is significantly less than in HIV-negative people. There was a poor prognosis of GBM in PLWH, which is inconsistent with previous reports. Further investigation is required for PLWH and concomitant GBM. Analyses must consider if HAART is maintained in PLWH during GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , HIV Infections , Brain Neoplasms/epidemiology , Brain Neoplasms/therapy , Glioblastoma/epidemiology , Glioblastoma/therapy , HIV , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Kaplan-Meier Estimate , Treatment Outcome
7.
Sci Rep ; 12(1): 6902, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477752

ABSTRACT

Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.


Subject(s)
Endogenous Retroviruses , Glioblastoma , Computational Biology , DNA Methylation , Endogenous Retroviruses/genetics , Glioblastoma/genetics , Humans , Open Reading Frames
8.
World Neurosurg ; 162: 47-56, 2022 06.
Article in English | MEDLINE | ID: mdl-35314408

ABSTRACT

BACKGROUND: Isocitrate dehydrogenase (IDH) mutations are present in 70% of World Health Organization grade II and III gliomas. IDH mutation induces accumulation of the oncometabolite 2-hydroxyglutarate. Therefore, therapies targeting reversal of epigenetic dysregulation in gliomas have been suggested. However, the utility of epigenetic treatments in gliomas remains unclear. Here, we present the first clinical systematic review of epigenetic therapies in treatment of IDH-mutant gliomas and highlight their safety and efficacy. METHODS: We conducted a systematic search of electronic databases from 2000 to January 2021 following PRISMA guidelines. Articles were screened to include clinical usage of epigenetic therapies in case reports, prospective case series, or clinical trials. Primary and secondary outcomes included safety/tolerability of epigenetic therapies and progression-free survival/overall survival, respectively. RESULTS: A total of 133 patients across 8 clinical studies were included in our analysis. IDH inhibitors appear to have the best safety profile, with an overall grade 3/grade 4 adverse event rate of 9%. Response rates to IDH-mutant inhibitors were highest in nonenhancing gliomas (stable disease achieved in 55% of patients). In contrast, histone deacetylase inhibitors demonstrate a lower safety profile with single-study adverse events as high as 28%. CONCLUSION: IDH inhibitors appear promising given their benign toxicity profile and ease of monitoring. Histone deacetylase inhibitors appear to have a narrow therapeutic index, as lower concentrations do not appear effective, while increased doses can produce severe immunosuppressive effects. Preliminary data suggest that epigenetic therapies are generally well tolerated and may control disease in certain patient groups, such as those with nonenhancing lesions.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Epigenesis, Genetic/genetics , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Histone Deacetylase Inhibitors , Humans , Isocitrate Dehydrogenase/genetics , Mutation/genetics
9.
Cancers (Basel) ; 13(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771443

ABSTRACT

H3K27M-mutant diffuse midline gliomas (DMGs) are rare childhood central nervous system tumors that carry a dismal prognosis. Thus, innovative treatment approaches are greatly needed to improve clinical outcomes for these patients. Here, we discuss current trends in research of H3K27M-mutant diffuse midline glioma. This review highlights new developments of molecular pathophysiology for these tumors, as they relate to epigenetics and therapeutic targeting. We focus our discussion on combinatorial therapies addressing the inherent complexity of treating H3K27M-mutant diffuse midline gliomas and incorporating recent advances in immunotherapy, molecular biology, genetics, radiation, and stereotaxic surgical diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...