Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(6)2018 May 24.
Article in English | MEDLINE | ID: mdl-29882912

ABSTRACT

The present paper describes the experimentation in a controlled environment and a real environment using different photosensors, such as infrared light emitting diode (IRLED-as receiver), photodiode, light dependent resistor (LDR), and blue LED for the purpose of selecting those devices, which can be employed in adverse conditions, such as sunlight or artificial sources. The experiments that are described in this paper confirmed that the blue LED and phototransistor could be used as a photosensor of an Optical Scanning System (OSS), because they were less sensitive to sunlight radiation. Moreover, they are appropriate as reference sources that are selected for the experiment (blue LED flashlight and light bulb). The best experimental results that were obtained contained a digital filter that was applied to the output of the photosensor, which reduced the standard deviation for the best case for the phototransistor LED from 100.26 to 0.15. For the best case, using the blue LED, the standard deviation was reduced from 86.08 to 0.11. Using these types of devices the cost of the Optical Scanning System can be reduced and a considerable increase in resolution and accuracy.

2.
Sensors (Basel) ; 18(6)2018 May 24.
Article in English | MEDLINE | ID: mdl-29882914

ABSTRACT

Magnetohydrodynamics (MHD) is becoming more popular every day among developers of applications based on microfluidics, such as “lab on a chip” (LOC) and/or “micro-total analysis systems” (micro-TAS). Its physical properties enable fluid manipulation for tasks such as pumping, networking, propelling, stirring, mixing, and even cooling without the need for mechanical components, and its non-intrusive nature provides a solution to mechanical systems issues. However, these are not easy tasks. They all require precise flow control, which depends on several parameters, like microfluidics conductivity, the microfluidics conduit (channel) shape and size configuration, and the interaction between magnetic and electric fields. This results in a mathematical model that needs to be validated theoretically and experimentally. The present paper introduces the design of a 3D laminar flow involving an electrolyte in an annular open channel driven by a Lorentz force. For an organized description, first of all is provided an introduction to MHD applied in microfluidics, then an overall description of the proposed MHD microfluidic system is given, after that is focused in the theoretical validation of the mathematical model, next is described the experimental validation of the mathematical model using a customized vision system, and finally conclusions and future work are stated.

SELECTION OF CITATIONS
SEARCH DETAIL
...