Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 14: 1264599, 2023.
Article in English | MEDLINE | ID: mdl-38162669

ABSTRACT

Piscirickettsia salmonis is the most important health problem facing Chilean Aquaculture. Previous reports suggest that P. salmonis can survive in salmonid macrophages by interfering with the host immune response. However, the relevant aspects of the molecular pathogenesis of P. salmonis have been poorly characterized. In this work, we evaluated the transcriptomic changes in macrophage-like cell line SHK-1 infected with P. salmonis at 24- and 48-hours post-infection (hpi) and generated network models of the macrophage response to the infection using co-expression analysis and regulatory transcription factor-target gene information. Transcriptomic analysis showed that 635 genes were differentially expressed after 24- and/or 48-hpi. The pattern of expression of these genes was analyzed by weighted co-expression network analysis (WGCNA), which classified genes into 4 modules of expression, comprising early responses to the bacterium. Induced genes included genes involved in metabolism and cell differentiation, intracellular transportation, and cytoskeleton reorganization, while repressed genes included genes involved in extracellular matrix organization and RNA metabolism. To understand how these expression changes are orchestrated and to pinpoint relevant transcription factors (TFs) controlling the response, we established a curated database of TF-target gene regulatory interactions in Salmo salar, SalSaDB. Using this resource, together with co-expression module data, we generated infection context-specific networks that were analyzed to determine highly connected TF nodes. We found that the most connected TF of the 24- and 48-hpi response networks is KLF17, an ortholog of the KLF4 TF involved in the polarization of macrophages to an M2-phenotype in mammals. Interestingly, while KLF17 is induced by P. salmonis infection, other TFs, such as NOTCH3 and NFATC1, whose orthologs in mammals are related to M1-like macrophages, are repressed. In sum, our results suggest the induction of early regulatory events associated with an M2-like phenotype of macrophages that drives effectors related to the lysosome, RNA metabolism, cytoskeleton organization, and extracellular matrix remodeling. Moreover, the M1-like response seems delayed in generating an effective response, suggesting a polarization towards M2-like macrophages that allows the survival of P. salmonis. This work also contributes to SalSaDB, a curated database of TF-target gene interactions that is freely available for the Atlantic salmon community.


Subject(s)
Salmo salar , Animals , Salmo salar/genetics , Gene Expression Profiling , Macrophages/metabolism , Transcription Factors/metabolism , RNA/metabolism , Mammals
2.
Front Immunol ; 11: 544718, 2020.
Article in English | MEDLINE | ID: mdl-33281810

ABSTRACT

Piscirickettsia salmonis, an aggressive intracellular pathogen, is the etiological agent of salmonid rickettsial septicemia (SRS). This is a chronic multisystemic disease that generates high mortalities and large losses in Chilean salmon farming, threatening the sustainability of the salmon industry. Previous reports suggest that P. salmonis is able to survive and replicate in salmonid macrophages, inducing an anti-inflammatory environment and a limited lysosomal response that may be associated with host immune evasion mechanisms favoring bacterial survival. Current control and prophylaxis strategies against P. salmonis (based on the use of antibiotics and vaccines) have not had the expected success against infection. This makes it urgent to unravel the host-pathogen interaction to develop more effective therapeutic strategies. In this study, we evaluated the effect of treatment with IgM-beads on lysosomal activity in Atlantic salmon macrophage-enriched cell cultures infected with P. salmonis by analyzing the lysosomal pH and proteolytic ability through confocal microscopy. The impact of IgM-beads on cytotoxicity induced by P. salmonis in infected cells was evaluated by quantification of cell lysis through release of Lactate Dehydrogenase (LDH) activity. Bacterial load was determined by quantification of 16S rDNA copy number by qPCR, and counting of colony-forming units (CFU) present in the extracellular and intracellular environment. Our results suggest that stimulation with antibodies promotes lysosomal activity by lowering lysosomal pH and increasing the proteolytic activity within this organelle. Additionally, incubation with IgM-beads elicits a decrease in bacterial-induced cytotoxicity in infected Atlantic salmon macrophages and reduces the bacterial load. Overall, our results suggest that stimulation of cells infected by P. salmonis with IgM-beads reverses the modulation of the lysosomal activity induced by bacterial infection, promoting macrophage survival and bacterial elimination. This work represents a new important evidence to understand the bacterial evasion mechanisms established by P. salmonis and contribute to the development of new effective therapeutic strategies against SRS.


Subject(s)
Antibodies, Bacterial/immunology , Fish Diseases/immunology , Lysosomes/immunology , Macrophages/immunology , Piscirickettsia/immunology , Piscirickettsiaceae Infections/immunology , Salmon/immunology , Animals , Fish Diseases/microbiology , Lysosomes/microbiology , Macrophages/microbiology , Piscirickettsiaceae Infections/veterinary , Salmon/microbiology
3.
Biol Res ; 53(1): 26, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32513271

ABSTRACT

BACKGROUND: There is an emerging field to put into practice new strategies for developing molecules with antimicrobial properties. In this line, several metals and metalloids are currently being used for these purposes, although their cellular effect(s) or target(s) in a particular organism are still unknown. Here we aimed to investigate and analyze Au3+ toxicity through a combination of biochemical and molecular approaches. RESULTS: We found that Au3+ triggers a major oxidative unbalance in Escherichia coli, characterized by decreased intracellular thiol levels, increased superoxide concentration, as well as by an augmented production of the antioxidant enzymes superoxide dismutase and catalase. Because ROS production is, in some cases, associated with metal reduction and the concomitant generation of gold-containing nanostructures (AuNS), this possibility was evaluated in vivo and in vitro. CONCLUSIONS: Au3+ is toxic for E. coli because it triggers an unbalance of the bacterium's oxidative status. This was demonstrated by using oxidative stress dyes and antioxidant chemicals as well as gene reporters, RSH concentrations and AuNS generation.


Subject(s)
Escherichia coli/drug effects , Gold/toxicity , Metal Nanoparticles/toxicity , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects
4.
Biol. Res ; 53: 26, 2020. graf
Article in English | LILACS | ID: biblio-1124211

ABSTRACT

BACKGROUND: There Is an emerging field to put Into practice new strategies for developing molecules with antimicrobial properties. In this line, several metals and metalloids are currently being used for these purposes, although their cellular effect(s) or target(s) in a particular organism are still unknown. Here we aimed to investigate and analyze Au3+ toxicity through a combination of biochemical and molecular approaches. RESULTS: We found that Au3+ triggers a major oxidative unbalance in Escherichia coli, characterized by decreased intracellular thiol levels, increased superoxide concentration, as well as by an augmented production of the antioxidant enzymes superoxide dismutase and catalase. Because ROS production is, in some cases, associated with metal reduction and the concomitant generation of gold-containing nanostructures (AuNS), this possibility was evaluated in vivo and in vitro. CONCLUSIONS: Au3+ is toxic for E. coli because it triggers an unbalance of the bacterium's oxidative status. This was demonstrated by using oxidative stress dyes and antioxidant chemicals as well as gene reporters, RSH concentrations and AuNS generation.


Subject(s)
Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Escherichia coli/drug effects , Metal Nanoparticles/toxicity , Gold/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...