Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Evol Biol ; 37(1): 123-129, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285663

ABSTRACT

Vertical gradients in microclimate, resource availability, and interspecific interactions are thought to underly stratification patterns in tropical insect communities. However, only a few studies have explored the adaptive significance of vertical space use during the early stages of reproductive isolation. We analysed flight-height variation across speciation events in Heliconius butterflies, representing parallel colonizations of high-altitude forest. We measured flight-height in wild H. erato venus and H. chestertonii, parapatric lowland and mountain specialists, respectively, and found that H. chestertonii consistently flies at a lower height. By comparing our data to previously published results for the ecologically equivalent H. e. cyrbia (lowland) and H. himera (high altitude), we found that the species flying closest to the ground are those that recently colonized high-altitude forests. We show that these repeated trends largely result from shared patterns of ecological selection producing parallel trait-shifts in H. himera and H. chestertonii. Although our results imply a signature of local adaptation, we did not find an association between resource distribution and flight-height in H. e. venus and H. chestertonii. We discuss how this pattern may be explained by variations in forest structure and microclimate. Overall, our findings underscore the importance of behavioural adjustments during early divergence mediated by altitude-shifts.


Subject(s)
Butterflies , Animals , Altitude , Phenotype
2.
Article in English | MEDLINE | ID: mdl-38052495

ABSTRACT

In this work, we explore the potential influence of sensory ecology on speciation, including but not limited to the concept of sensory drive, which concerns the coevolution of signals and sensory systems with the local environment. The sensory environment can influence individual fitness in a variety of ways, thereby affecting the evolution of both pre- and postmating reproductive isolation. Previous work focused on sensory drive has undoubtedly advanced the field, but we argue that it may have also narrowed our understanding of the broader influence of the sensory ecology on speciation. Moreover, the clearest examples of sensory drive are largely limited to aquatic organisms, which may skew the influence of contributing factors. We review the evidence for sensory drive across environmental conditions, and in this context discuss the importance of more generalized effects of sensory ecology on adaptive behavioral divergence. Finally, we consider the potential of rapid environmental change to influence reproductive barriers related to sensory ecologies. Our synthesis shows the importance of sensory conditions for local adaptation and divergence in a range of behavioral contexts and extends our understanding of the interplay between sensory ecology and speciation.


Subject(s)
Biological Evolution , Ecology , Genetic Speciation
3.
Evolution ; 77(6): 1458-1467, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37075171

ABSTRACT

Parallel evolution of morphological traits is widely reported, providing evidence for the role of local conditions in driving adaptive divergence. Comparatively, fewer studies have tested for parallelism in behavior, and it is less clear to what extent heritable behavioral shifts contribute to adaptive divergence. We exploit repeated incipient speciation across altitudinal gradients to explore behavior and physiology in Heliconius butterflies adapted to high-elevation. We performed common garden experiments with H. chestertonii, a high-altitude specialist from the Colombian Cordillera Occidental, and H. erato venus, a low-elevation proxy for the ancestral population, and compared our results to existing data for an equivalent Ecuadorian taxa-pair. Using broad-scale climatic data, we show that both pairs diverge across similar ecological gradients, confirmed using localized data loggers in the ranges of H. chestertonii and H. e. venus. We further show that H. chestertonii and H. e. venus have divergent activity patterns, attributable to different responses to microclimate, and life histories. Finally, we provide evidence for parallelism in these traits with H. himera and H. e. cyrbia. We propose that this is a result of selection associated with independent colonizations of high-altitude forests, emphasizing the importance of heritable behavioral and physiological adaptations during population divergence and speciation.


Subject(s)
Butterflies , Animals , Butterflies/physiology , Genetic Speciation , Phenotype , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...