Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(13)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38100827

ABSTRACT

The superconducting and structural properties of bilayer thin films based on YBa2Cu3O7-x / YBa2Cu3O7-x+6%BaZrO3heterstructures have been studied. In a broad range of magnetic field strengths and temperatures, the optimal bilayer film comprises 30% YBCO at the substrate interface and 70% YBCO+6%BZO on the top. The critical current density measured for the optimal bilayer structure is shown to outperform the corresponding single layer films up to almost 60%. The obtained results are comprehensively discussed in the light of our previously published theoretical framework (Rivastoet al2023J. Phys.: Condens. Matter35075701:1-10). We conclude that the bilayering provides an efficient and easily applicable way to further increase the performance and applicability of high-temperature superconductors in various applications. Consequently, the bilayer films should be seriously considered as candidates for the upcoming generation of coated conductors.

2.
J Phys Condens Matter ; 35(47)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37552999

ABSTRACT

The effect of multilayering YBa2Cu3O6+x(YBCO) thin films with sequentially deposited CeO2layers between YBCO layers grown on buffered metallic template is investigated to optimize the self-field critical current densityJc(0). We have obtained that the improvement inJc(0)clearly depends on the YBCO layer thickness and temperature, where at high temperatureJc(0)can be increased even 50% when compared with the single layer YBCO films. Based on our experimental results and theoretical approach to the growth mechanism during multilayer deposition, we have defined a critical thickness for the YBCO layer, where the maximal self-fieldJc(0)is strongly related to the competing issues between the uniform and nonuniform strain relaxation and the formation of dislocations and other defects during the film growth. Our results can be directly utilized in the future coated conductor technology, when maximizing the overall in-fieldJc(B)by combining both the optimal crystalline quality and flux pinning properties typically in bilayer film structures.

3.
J Phys Condens Matter ; 35(7)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36322984

ABSTRACT

We argue that the current carrying properties of high-temperature superconducting thin films can be further improved, in particular under the mid-field range (B ≈ 0.1-2 T), via introduction of multilayer structures that compromise between good zero field critical current and vortex pinning performance. In this work we focus on a simple bilayer structure consisting of two adjacent layers of pure YBa2Cu3O6+x(YBCO) and BaZrO3(BZO) doped YBCO under magnetic field within the mid-field range oriented parallel to thec-axis of the YBCO unit cell. We have utilized a computational model to simulate the vortex dynamics limited critical current separately from the associated zero field current, which is addressed analytically. The obtained results have allowed us to estimate the optimal layer thicknesses as a function of magnetic field. Our idealized model suggests that the thickness of the doped layer should be substantially smaller than the undoped one, that is around 30% of the total thickness of the film. We have estimated that the current carrying capability of the optimized bilayer structure can be up to 50% higher when compared with corresponding single layer films. Possible deviations from the obtained results associated with the idealized model, most prominently the effect of natural defects, are comprehensively discussed. Our results provide the foundation for the future experimental realization of the proposed bilayer structures. The comparison between the presented results and experimental realization would enable further study of the underlying primitive vortex interactions.

4.
J Phys Condens Matter ; 34(23)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35294932

ABSTRACT

We introduce a molecular dynamics based simulation model that enables the efficient optimization of complex pinning structures in unpresented wide magnetic field and angular ranges for high-temperature superconductor applications. The fully three-dimensional simulation allows the modeling of the critical current and the associated anisotropy in the presence of any kinds of defects despite their size and orientation. Most prominently, these include artificial defects such as nanorods along with intrinsic weak-links orab-plane oriented stacking faults, for example. In this work, we present and analyze the most fundamental results of the simulation model and compare them indirectly with a wide range of previous experimental and computational observations. With the provided validation for the proposed simulation model, we consider it to be an extremely useful tool in particular for pushing the limits of ampacity in the coated conductor industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...