Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Chem Rec ; 24(3): e202300322, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279622

ABSTRACT

The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.


Subject(s)
Amino Acids , Proteins , Amino Acids/chemistry , Proteins/chemistry , Peptides/chemistry , Polymers
2.
Angew Chem Int Ed Engl ; 63(1): e202310983, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37857582

ABSTRACT

The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.


Subject(s)
Natural Killer T-Cells , Vaccines , Adjuvants, Immunologic/pharmacology , Galactosylceramides/pharmacology , Galactosylceramides/chemistry
3.
Vaccines (Basel) ; 11(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38005968

ABSTRACT

(1) Background: In children, SARS-CoV-2 infection is mostly accompanied by mild COVID-19 symptoms. However, multisystem inflammatory syndrome (MIS-C) and long-term sequelae are often severe complications. Therefore, the protection of the pediatric population against SARS-CoV-2 with effective vaccines is particularly important. Here, we compare the humoral and cellular immune responses elicited in children (n = 15, aged 5-11 years) vaccinated with the RBD-based vaccines SOBERANA® 02 and SOBERANA® Plus combined in a heterologous scheme with those from children (n = 10, aged 4-11 years) who recovered from mild symptomatic COVID-19. (2) Methods: Blood samples were taken 14 days after the last dose for vaccinated children and 45-60 days after the infection diagnosis for COVID-19 recovered children. Anti-RBD IgG and ACE2-RBD inhibition were assessed by ELISA; IgA, cytokines, and cytotoxic-related proteins were determined by multiplex assays. Total B and T cell subpopulations and IFN-γ release were measured by multiparametric flow cytometry using a large panel of antibodies after in vitro stimulation with S1 peptides. (3) Results: Significant higher levels of specific anti-RBD IgG and IgA and ACE2-RBD inhibition capacity were found in vaccinated children in comparison to COVID-19 recovered children. Th1-like and Th2-like CD4+ T cells were also significantly higher in vaccinated subjects. IFN-γ secretion was higher in central memory CD4+ T cells of COVID-19 recovered children, but no differences between both groups were found in the CD4+ and CD8+ T cell effector, terminal effector, and naïve T cell subpopulations. In contrast to low levels of IL-4, high levels of IL-2, IL-6, IFN-γ, and IL-10 suggest a predominant Th1 cell polarization. Cytotoxic-related proteins granzyme A and B, perforin, and granulin were also found in the supernatant after S1 stimulation in both vaccinated and recovered children. (4) Conclusions: Vaccination with the heterologous scheme of SOBERANA® 02/SOBERANA® Plus induces a stronger antibody and cellular immune response compared to natural infections in young children.

4.
Chembiochem ; 24(13): e202300229, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37171138

ABSTRACT

Macrocyclization of peptides is typically used to fix specific bioactive conformations and improve their pharmacological properties. Recently, macrobicyclic peptides have received special attention owing to their capacity to mimic protein structures or be key components of peptide-drug conjugates. Here, we describe the development of novel synthetic strategies for two distinctive types of peptide macrobicycles. A multicomponent macrocyclo-dimerization approach is introduced for the production of interconnected ß-turns, allowing two macrocyclic rings to be formed and dimerized in one pot. Also, an on-resin double stapling strategy is described for the assembly of lactam-bridged macrobicycles with stable tertiary folds.


Subject(s)
Peptides, Cyclic , Peptides , Peptides, Cyclic/chemistry , Cyclization , Peptides/chemistry , Lactams , Molecular Conformation
5.
Curr Drug Targets ; 24(5): 416-461, 2023.
Article in English | MEDLINE | ID: mdl-36825701

ABSTRACT

BACKGROUND: Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE: In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION: Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.


Subject(s)
Communicable Diseases , Parasites , Toxoplasma , Animals , Humans , Aminopeptidases , Parasites/metabolism , Plasmodium falciparum
6.
Med ; 3(11): 760-773.e5, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35998623

ABSTRACT

BACKGROUND: SOBERANA 02 has been evaluated in phase I and IIa studies comparing homologous versus heterologous schedule (this one, including SOBERANA Plus). Here, we report results of immunogenicity, safety, and reactogenicity of SOBERANA 02 in a two- or three-dose heterologous scheme in adults. METHOD: Phase IIb was a parallel, multicenter, adaptive, double-blind, randomized, and placebo-controlled trial. Subjects (n = 810) aged 19-80 years were randomized to receive two doses of SARS-CoV-2 RBD conjugated to tetanus toxoid (SOBERANA 02) and a third dose of dimeric RBD (SOBERANA Plus) 28 days apart; two production batches of active ingredients of SOBERANA 02 were evaluated. Primary outcome was the percentage of seroconverted subjects with ≥4-fold the anti-RBD immunoglobulin G (IgG) concentration. Secondary outcomes were safety, reactogenicity, and neutralizing antibodies. FINDINGS: Seroconversion rate in vaccinees was 76.3% after two doses and 96.8% after the third dose of SOBERANA Plus (7.3% in the placebo group). Neutralizing IgG antibodies were detected against D614G and variants of concern (VOCs) Alpha, Beta, Delta, and Omicron. Specific, functional antibodies were detected 7-8 months after the third dose. The frequency of serious adverse events (AEs) associated with vaccination was very low (0.1%). Local pain was the most frequent AE. CONCLUSIONS: Two doses of SOBERANA 02 were safe and immunogenic in adults. The heterologous combination with SOBERANA Plus increased neutralizing antibodies, detectable 7-8 months after the third dose. TRIAL REGISTRY: https://rpcec.sld.cu/trials/RPCEC00000347 FUNDING: This work was supported by Finlay Vaccine Institute, BioCubaFarma, and the Fondo Nacional de Ciencia y Técnica (FONCI-CITMA-Cuba, contract 2020-20).


Subject(s)
COVID-19 , Vaccines , Adult , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Immunoglobulin G
7.
Vaccine ; 40(31): 4220-4230, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35691871

ABSTRACT

BACKGROUND: SOBERANA 02 is a COVID-19 vaccine based on SARS-CoV-2 recombinant RBD conjugated to tetanus toxoid (TT). SOBERANA Plus antigen is dimeric-RBD. Here we report safety and immunogenicity from phase I and IIa clinical trials using two-doses of SOBERANA 02 and three-doses (homologous) or heterologous (with SOBERANA Plus) protocols. METHOD: We performed an open-label, sequential and adaptive phase I to evaluate safety and explore the immunogenicity of SOBERANA 02 in two formulations (15 or 25 µg RBD-conjugated to 20 µg of TT) in 40 subjects, 19-59-years-old. Phase IIa was open-label including 100 volunteers 19-80-years, receiving two doses of SOBERANA 02-25 µg. In both trials, half of volunteers were selected to receive a third dose of the corresponding SOBERANA 02 and half received a heterologous dose of SOBERANA Plus. Primary outcome was safety. The secondary outcome was immunogenicity evaluated by anti-RBD IgG ELISA, molecular neutralization of RBD:hACE2 interaction, live-virus-neutralization and specific T-cells response. RESULTS: The most frequent adverse event (AE) was local pain, other AEs had frequencies ≤ 5%. No serious related-AEs were reported. Phase IIa confirmed the safety in 60 to 80-years-old subjects. In phase-I SOBERANA 02-25 µg elicited higher immune response than SOBERANA 02-15 µg and progressed to phase IIa. Phase IIa results confirmed the immunogenicity of SOBERANA 02-25 µg even in 60-80-years. Two doses of SOBERANA02-25 µg elicited an immune response similar to that of the Cuban Convalescent Serum Panel and it was higher after the homologous and heterologous third doses. The heterologous scheme showed a higher immunological response. Anti-RBD IgG neutralized the delta variant in molecular assay, with a 2.5-fold reduction compared to D614G neutralization. CONCLUSIONS: SOBERANA 02 was safe and immunogenic in persons aged 19-80 years, eliciting neutralizing antibodies and specific T-cell response. Highest immune responses were obtained in the heterologous three doses protocol. TRIAL REGISTRY: https://rpcec.sld.cu/trials/RPCEC00000340, https://rpcec.sld.cu/trials/RPCEC00000347.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Humans , Immunization, Passive , Immunogenicity, Vaccine , Immunoglobulin G , Middle Aged , SARS-CoV-2 , Young Adult , COVID-19 Serotherapy
8.
RSC Chem Biol ; 3(2): 242-249, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35360883

ABSTRACT

SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host's cellular receptor. Vaccines seek to block this interaction by eliciting neutralizing antibodies, most of which are directed toward the RBD. Many protein subunit vaccines require powerful adjuvants to generate a potent antibody response. Here, we report on the use of a SARS-CoV-2 dimeric recombinant RBD combined with Neisseria meningitidis outer membrane vesicles (OMVs), adsorbed on alum, as a promising COVID-19 vaccine candidate. This formulation induces a potent and neutralizing immune response in laboratory animals, which is higher than that of the dimeric RBD alone adsorbed on alum. Sera of people vaccinated with this vaccine candidate, named Soberana01, show a high inhibition level of the RBD-ACE2 interaction using RBD mutants corresponding to SARS-CoV-2 variants of concern and wild-type expressed using the phage display technology. To our knowledge, this is the first time that the immunostimulation effect of N. meningitidis OMVs is evaluated in vaccine candidates against SARS-CoV-2.

9.
J Pharm Biomed Anal ; 214: 114721, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35338945

ABSTRACT

Novel unimolecular bivalent glycoconjugates were assembled combining several functionalized capsular polysaccharides of Streptococcus pneumoniae and Neisseria meningitidis to a carrier protein by using an effective strategy based on the Ugi 4-component reaction. The development of multivalent glycoconjugates opens new opportunities in the field of vaccine design, but their high structural complexity involves new analytical challenges. Nuclear Magnetic Resonance has found wide applications in the characterization and impurity profiling of carbohydrate-based vaccines. Eight bivalent conjugates were studied by quantitative NMR analyzing the structural identity, the content of each capsular polysaccharide, the ratios between polysaccharides, the polysaccharide to protein ratios and undesirable contaminants. The qNMR technique involves experiments with several modified parameters for obtaining spectra with quantifiable signals. In addition, the achieved NMR results were combined with the results of colorimetric assay and Size Exclusion HPLC for assessing the protein content and free protein percentage, respectively. The application of quantitative NMR showed to be efficient to clear up the new structural complexities while allowing the quantitative assessment of the components.


Subject(s)
Glycoconjugates , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Polysaccharides , Polysaccharides, Bacterial/chemistry , Vaccines, Conjugate/chemistry
10.
Curr Drug Targets ; 23(12): 1155-1190, 2022.
Article in English | MEDLINE | ID: mdl-35297344

ABSTRACT

BACKGROUND: Human infectious diseases caused by bacteria are a worldwide health problem due to the increased resistance of these microorganisms to conventional antibiotics. For this reason, the identification of novel molecular targets and the discovery of new antibacterial compounds are urgently required. Metalo-aminopeptidases are promising targets in bacterial infections. They participate in crucial processes for bacterial growth and pathogenesis, such as protein and peptide degradation to supply amino acids, protein processing, access to host tissues, cysteine supply for redox control, transcriptional regulation, site-specific DNA recombination, and hydrogen sulfide production. Although several of these enzymes are not essential, they are required for virulence and maximal growth in conditions of nutrient limitation and high temperatures. OBJECTIVE: In this review, we describe the structural, functional, and kinetic properties of some examples of bacterial metalo-aminopeptidases, in the context of their use as antibacterial targets. In addition, we present some inhibitors reported for these enzymes. CONCLUSION: It is necessary to conduct a meticulous work to validate these peptidases as good/bad targets and to identify inhibitors with potential therapeutic use.


Subject(s)
Communicable Diseases , Hydrogen Sulfide , Aminopeptidases , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Cysteine , DNA , Humans , Peptide Hydrolases , Peptides
11.
Methods Mol Biol ; 2371: 143-157, 2022.
Article in English | MEDLINE | ID: mdl-34596847

ABSTRACT

Multicomponent reactions (MCRs) are recently expanding the plethora of solid-phase protocols for the synthesis and derivatization of peptides. Herein, we describe a solid-phase-compatible strategy based on MCRs as a powerful strategy for peptide cyclization and ligation . We illustrate, using Gramicidin S as a model peptide, how the execution of on-resin Ugi reactions enables the simultaneous backbone N-functionalization and cyclization, which are important types of derivatizations in peptide-based drug development or for incorporation of conjugation handles, or labels.


Subject(s)
Peptides, Cyclic/chemistry , Cyclization , Gramicidin
12.
Anal Bioanal Chem ; 413(30): 7559-7585, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34739558

ABSTRACT

Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage (≥ 99%) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), and the His6-tagged C-terminal peptide carrying several post-translational modifications at Cys538 such as cysteinylation, homocysteinylation, glutathionylation, truncated glutathionylation, and cyanylation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90%) and did not detect peptides carrying most of the above-mentioned PTMs. The two C-terminal peptides of a dimer [RBD(319-541)-(His)6]2 linked by an intermolecular disulfide bond (Cys538-Cys538) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD, low-abundance scrambling variants, free cysteine residues, O-glycoforms, and incomplete processing of the N-terminal end, if present. Artifacts generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented; it has been applied to the characterization of the active pharmaceutical ingredient of two RBD-based vaccines, and we foresee that it can be also helpful to the characterization of mutated RBDs.


Subject(s)
Cysteine/metabolism , Peptide Fragments/metabolism , Protein Processing, Post-Translational , Spectrometry, Mass, Electrospray Ionization/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Cysteine/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Peptide Fragments/chemistry , Protein Binding , Protein Domains , Protein Subunits
13.
Life (Basel) ; 11(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34685408

ABSTRACT

Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite's leucyl-aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009 are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting point compound for the rational design of drugs through further optimization.

14.
ACS Chem Biol ; 16(7): 1223-1233, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34219448

ABSTRACT

Controlling the global COVID-19 pandemic depends, among other measures, on developing preventive vaccines at an unprecedented pace. Vaccines approved for use and those in development intend to elicit neutralizing antibodies to block viral sites binding to the host's cellular receptors. Virus infection is mediated by the spike glycoprotein trimer on the virion surface via its receptor binding domain (RBD). Antibody response to this domain is an important outcome of immunization and correlates well with viral neutralization. Here, we show that macromolecular constructs with recombinant RBD conjugated to tetanus toxoid (TT) induce a potent immune response in laboratory animals. Some advantages of immunization with RBD-TT conjugates include a predominant IgG immune response due to affinity maturation and long-term specific B-memory cells. These result demonstrate the potential of the conjugate COVID-19 vaccine candidates and enable their advance to clinical evaluation under the name SOBERANA02, paving the way for other antiviral conjugate vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody Formation/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Tetanus Toxoid/chemistry , Vaccines, Conjugate/administration & dosage , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccination , Vaccines, Conjugate/immunology
15.
Biomolecules ; 11(5)2021 05 17.
Article in English | MEDLINE | ID: mdl-34067685

ABSTRACT

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum ß-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25-50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Herpesvirus 2, Human/drug effects , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , Candida albicans/drug effects , Cell Line , Cell Survival/drug effects , Dimerization , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , SARS-CoV-2/drug effects
16.
ACS Cent Sci ; 7(5): 757-767, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34075345

ABSTRACT

The development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization. In this review, we summarize with a critical view the molecular aspects associated with the interaction of SARS-CoV-2 RBD with its receptor in human cells, the angiotensin-converting enzyme 2 (ACE2), the epitopes involved in the neutralizing activity, and the impact of virus mutations thereof. Recent trends in RBD-based vaccines are analyzed, providing detailed insights into the role of antigen display and multivalence in the immune response of vaccines under development.

17.
Bioorg Chem ; 113: 104987, 2021 08.
Article in English | MEDLINE | ID: mdl-34022444

ABSTRACT

The stabilization of helical structures by peptide stapling approaches is now a mature technology capable to provide a variety of biomedical applications. Recently, it was shown that multicomponent macrocyclization is not only an effective way to introduce conformational constraints but it also allows to incorporate additional functionalities to the staple moiety in a one-pot process. This work investigates the scope of the double Ugi multicomponent stapling approach in its capacity to produce helical peptides from unstructured sequences. For this, three different stapling combinations were implemented and the CD spectra of the cyclic peptides were measured to determine the effect of the multicomponent macrocyclization on the resulting secondary structure. A new insight into some structural factors influencing the helicity type and content is provided, along with new prospects on the utilization of this methodology to diversify the molecular tethers linking the amino acid side chains.


Subject(s)
Peptides/chemical synthesis , Circular Dichroism , Peptides/chemistry , Protein Conformation, alpha-Helical
18.
Nat Protoc ; 16(2): 561-578, 2021 02.
Article in English | MEDLINE | ID: mdl-33473197

ABSTRACT

Solid-phase synthesis represents the methodological showcase for technological advances such as split-and-pool combinatorial chemistry and the automated synthesis of peptides, nucleic acids and polysaccharides. These strategies involve iterative coupling cycles that do not generate functional diversity besides that incorporated by the amino acids, nucleosides and monosaccharide building blocks. In sharp contrast, multicomponent reactions (MCRs) are traditionally used to generate both skeletal and appendage diversity in short, batchwise procedures. On-resin MCRs have traditionally been employed for the construction of heterocycle and peptidomimetic libraries, but that scenario has changed recently, and today the focus is more on the solid-phase derivatization of peptides and oligonucleotides. This review presents relevant experimental details and addresses the synthetic scope of such on-resin multicomponent protocols employed to accomplish specific biopolymer covalent modifications that are practically inviable by traditional solution-phase methodologies. Recommendations are provided to facilitate the implementation of solid-supported protocols and avoid possible pitfalls associated with the selection of the polymeric resin, the solvent and the order and amount of the reagents employed. We describe procedures comprising the multicomponent lipidation, biotinylation and labeling of both termini and the side chains, as well as the use of MCRs in the traceless on-resin synthesis of ligated and cyclic peptides. Solid-phase protocols for the assembly of α-helical and parallel ß-sheet peptides as well as hybrid peptide-peptoid and peptide-peptide nucleic acid architectures are described. Finally, the solid-supported multicomponent derivatization of DNA oligonucleotides is illustrated as part of the DNA-encoded library technology relying on MCR-derived heterocyclic compounds.


Subject(s)
Biopolymers/chemistry , Combinatorial Chemistry Techniques/methods , Solid-Phase Synthesis Techniques/methods , Amines , Amino Acids , Biopolymers/biosynthesis , Biotinylation , DNA , Heterocyclic Compounds , Oligonucleotides , Peptides/chemical synthesis , Peptides, Cyclic , Resins, Synthetic/chemistry
19.
Chem Sci ; 12(48): 15862-15869, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-35024110

ABSTRACT

An efficient strategy combining the stereocontrol of organocatalysis with the diversity-generating character of multicomponent reactions is described to produce structurally unique, tetrasubstituted cyclopentenyl frameworks. An asymmetric Michael addition-hemiacetalization between α-cyanoketones and α,ß-unsaturated aliphatic aldehydes was performed for constructing cyclic hemiacetals, which were next employed as chiral bifunctional substrates in a new diastereoselective intramolecular isocyanide-based multicomponent reaction. This approach furnished a diversity of structurally complex compounds - including peptidomimetics and natural product hybrids in high stereoselectivity (up to >99% ee and up to >99 : 1 dr) and in moderate to high yields.

20.
ACS Chem Biol ; 15(12): 3187-3196, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33242957

ABSTRACT

New antibiotics are urgently needed to address increasing rates of multidrug resistant infections. Seventy-six diversely functionalized compounds, comprising five structural scaffolds, were synthesized and tested for their ability to inhibit microbial growth. Twenty-six compounds showed activity in the primary phenotypic screen at the Community for Open Antimicrobial Drug Discovery (CO-ADD). Follow-up testing of active molecules confirmed that two unnatural dipeptides inhibit the growth of Cryptococcus neoformans with a minimum inhibitory concentration (MIC) ≤ 8 µg/mL. Syntheses were carried out by undergraduate students at five schools implementing Distributed Drug Discovery (D3) programs. This report showcases that a collaborative research and educational process is a powerful approach to discover new molecules inhibiting microbial growth. Educational gains for students engaged in this project are highlighted in parallel to the research advances. Aspects of D3 that contribute to its success, including an emphasis on reproducibility of procedures, are discussed to underscore the power of this approach to solve important research problems and to inform other coupled chemical biology research and teaching endeavors.


Subject(s)
Anti-Infective Agents/pharmacology , Education/organization & administration , Interinstitutional Relations , Organizational Affiliation , Humans , Microbial Sensitivity Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...