Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1406214, 2024.
Article in English | MEDLINE | ID: mdl-39021365

ABSTRACT

Introduction: Gestation under chronic hypoxia causes pulmonary hypertension, cardiovascular remodeling, and increased aortic stiffness in the offspring. To mitigate the neonatal cardiovascular risk, pharmacological treatments (such as hemin and sildenafil) have been proposed to improve pulmonary vasodilation. However, little is known about the effects of these treatments on the aorta. Therefore, we studied the effect of hemin and sildenafil treatments in the aorta of lambs gestated and raised at highlands, thereby subjected to chronic hypoxia. Methods: Several biomechanical tests were conducted in the descending thoracic aorta (DTA) and the distal abdominal aorta (DAA), assessing 3 groups of study of hypoxic animals: non-treated (Control) and treated either with hemin or sildenafil. Based on them, the stiffness level has been quantified in both zones, along with the physiological strain in the unloaded aortic duct. Furthermore, a morphological study by histology was conducted in the DTA. Results: Biomechanical results indicate that treatments trigger an increment of axial pre-stress and circumferential residual stress levels in DTA and DAA of lambs exposed to high-altitude chronic hypoxia, which reveals a vasodilatation improvement along with an anti-hypertensive response under this characteristic environmental condition. In addition, histological findings do not reveal significant differences in either structure or microstructural content. Discussion: The biomechanics approach emerges as a valuable study perspective, providing insights to explain the physiological mechanisms of vascular function. According to established results, alterations in the function of the aortic wall may not necessarily be explained by morphostructural changes, but rather by the characteristic mechanical state of the microstructural components that are part of the studied tissue. In this sense, the reported biomechanical changes are beneficial in mitigating the adverse effects of hypobaric hypoxia exposure during gestation and early postnatal life.

2.
Front Bioeng Biotechnol ; 11: 1301988, 2023.
Article in English | MEDLINE | ID: mdl-38053847

ABSTRACT

The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.

3.
Front Bioeng Biotechnol ; 11: 1233939, 2023.
Article in English | MEDLINE | ID: mdl-37675404

ABSTRACT

This work consists of analyzing the impact of geometrical features (thickness and curvature) on the estimation of circumferential residual stresses in arteries. For this purpose, a specific sample of lamb abdominal artery is chosen for analysis and, through computational tools based on Python libraries, the stress-free geometry is captured after the ring opening test. Numerical simulations are then used to reconstruct the sample in order to estimate the circumferential residual stresses. Then, four stress-free geometry models are analyzed: an ideal geometry, i.e., constant curvature and thickness; a constant curvature and variable thickness geometry; a variable curvature and constant thickness geometry; and a variable curvature and thickness geometry. The numerical results show that models perform well from a geometric point of view, where the most different feature was the closed outer perimeter that differs about 14% from the closed real sample. As far as residual stress is concerned, differences up to 198% were found in more realistic models taking a constant curvature and thickness model as reference. Thus, the analysis of a realistic geometry with highly variable curvature and thickness can introduce, compared to an idealized geometry, significant differences in the estimation of residual stresses. This could indicate that the characterization of arterial residual stresses is not sufficient when considering only the opening angle and, therefore, it is also necessary to incorporate more geometrical variables.

4.
Sci Rep ; 11(1): 13875, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230509

ABSTRACT

The present study involves experiments and modelling aimed at characterizing the passive structural mechanical behavior of the chronic hypoxic lamb thoracic aorta, whose gestation, birth and postnatal period were carried at high altitude (3600 masl). To this end, the mechanical response was studied via tensile and pressurization tests. The tensile and pressurization tests measurements were used simultaneously to calibrate the material parameters of the Gasser-Holzapfel-Ogden (GHO) hyperelasctic anisotropic constitutive model through an analytical-numerical optimization procedure solved with an evolutionary strategy that guarantees a stable response of the model. The model and procedure of calibration adequately adjust to the material behavior in a wide deformation range with an appropriate physical description. The results of this study predict the mechanical response of the lamb thoracic aorta under generalized loading states like those that can occur in physiological conditions and/or in systemic arterial hypertension. Finally, the novel use of the evolutionary strategy, together with the set of experiments and tools used in this study, provide a robust alternative to validate biomechanical characterizations.


Subject(s)
Aorta, Thoracic/physiopathology , Biological Evolution , Hypoxia/physiopathology , Algorithms , Animals , Animals, Newborn , Biomechanical Phenomena , Chronic Disease , Computer Simulation , Elastic Modulus , Pressure , Sheep , Stress, Mechanical , Tensile Strength
5.
J Mech Behav Biomed Mater ; 112: 104013, 2020 12.
Article in English | MEDLINE | ID: mdl-32846285

ABSTRACT

Chronic hypoxia is a condition that increases the cardiovascular complications of newborns gestated and born at high altitude (HA), over 2500 m above sea level (masl). A particularly complex pathology is pulmonary arterial hypertension of the neonate (PHN), which is increased at HA due to hypobaric hypoxia. Basic and clinical research have recognized that new treatments are needed, because current ones are, in general, palliative and with low effectiveness. Therefore, recently we have proposed melatonin as a potential adjuvant treatment to improve cardiopulmonary function. However, melatonin effects on the mechanical response of the arteries and their microstructure are not known. This study assesses the effects of a neonatal treatment with daily low doses of melatonin on the passive biomechanical behavior of the aorta artery and main pulmonary artery of PHN lambs born in chronic hypobaric hypoxia (at 3600 masl). With this purpose, ex-vivo measurements were made on axial stretch, tensile and opening ring tests together with a histological analysis to explore the morphometry and microstructure of the arteries. Our results show that the passive mechanical properties of the aorta artery and main pulmonary artery of lambs do not seem to be affected by a treatment based on low melatonin doses. However, we found evidence that melatonin has microstructural effects, particularly, diminishing cell proliferation, which is an indicator of antiremodeling capacity. Therefore, the use of melatonin as an adjuvant against pathologies like PHN would present antiproliferative effect at the microstructural level, keeping the macroscopic properties of the aorta artery and main pulmonary artery.


Subject(s)
Hypertension, Pulmonary , Hypoxia , Melatonin , Animals , Animals, Newborn , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , Melatonin/pharmacology , Pulmonary Artery , Sheep
6.
Nature ; 457(7229): 562-4, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19177124

ABSTRACT

Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

7.
San Juan, P.R; U.P.R., R.C.M., Escuela Graduada de Salud P£blica; 2006. ix, 70 p gr ficas:col, tablas.
Thesis | Puerto Rico | ID: por-45827
8.
San Juan, P.R; U.P.R., R.C.M., Escuela Graduada de Salud P£blica, Departamento de Salud Ambiental; 2006. ix, 70 p gr ficas, tablas.
Thesis | Puerto Rico | ID: por-46700
SELECTION OF CITATIONS
SEARCH DETAIL
...