Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978563

ABSTRACT

Intratumoral injections have the potential for enhanced cancer treatment efficacy while reducing costs and systemic exposure. However, intratumoral drug injections can result in substantial off-target leakage and are invisible under standard imaging modalities like ultrasound (US) and x-ray. A thermosensitive poloxamer-based gel for drug delivery was developed that is visible using x-ray imaging (computed tomography (CT), cone beam CT, fluoroscopy), as well as using US by means of integrating perfluorobutane-filled microbubbles (MBs). MBs content was optimized using tissue mimicking phantoms and ex vivo bovine livers. Gel formulations less than 1% MBs provided gel depositions that were clearly identifiable on US and distinguishable from tissue background and with minimal acoustic artifacts. The cross-sectional areas of gel depositions obtained with US and CT imaging were similar in studies using ex vivo bovine liver and postmortem in situ swine liver. The gel formulation enhanced multimodal image-guided navigation, enabling fusion of ultrasound and x-ray/CT imaging, which may enhance targeting, definition of spatial delivery, and overlap of tumor and gel. Although speculative, such a paradigm for intratumoral drug delivery might streamline clinical workflows, reduce radiation exposure by reliance on US, and boost the precision and accuracy of drug delivery targeting during procedures. Imageable gels may also provide enhanced temporal and spatial control of intratumoral conformal drug delivery.

2.
Ultrasound Med Biol ; 50(1): 1-7, 2024 01.
Article in English | MEDLINE | ID: mdl-37798210

ABSTRACT

Over the past decade, immunotherapy has emerged as a major modality in cancer medicine. However, despite its unprecedented success, immunotherapy currently benefits only a subgroup of patients, may induce responses of limited duration and is associated with potentially treatment-limiting side effects. In addition, responses to immunotherapeutics are sometimes diminished by the emergence of a complex array of resistance mechanisms. The efficacy of immunotherapy depends on dynamic interactions between tumour cells and the immune landscape in the tumour microenvironment. Ultrasound, especially in conjunction with cavitation-promoting agents such as microbubbles, can assist in the uptake and/or local release of immunotherapeutic agents at specific target sites, thereby increasing treatment efficacy and reducing systemic toxicity. There is also increasing evidence that ultrasound and/or cavitation may themselves directly stimulate a beneficial immune response. In this review, we summarize the latest developments in the use of ultrasound and cavitation agents to promote checkpoint inhibitor immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/drug therapy , Immunity , Tumor Microenvironment
3.
medRxiv ; 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36172131

ABSTRACT

The success of artificial intelligence in clinical environments relies upon the diversity and availability of training data. In some cases, social media data may be used to counterbalance the limited amount of accessible, well-curated clinical data, but this possibility remains largely unexplored. In this study, we mined YouTube to collect voice data from individuals with self-declared positive COVID-19 tests during time periods in which Omicron was the predominant variant1,2,3, while also sampling non-Omicron COVID-19 variants, other upper respiratory infections (URI), and healthy subjects. The resulting dataset was used to train a DenseNet model to detect the Omicron variant from voice changes. Our model achieved 0.85/0.80 specificity/sensitivity in separating Omicron samples from healthy samples and 0.76/0.70 specificity/sensitivity in separating Omicron samples from symptomatic non-COVID samples. In comparison with past studies, which used scripted voice samples, we showed that leveraging the intra-sample variance inherent to unscripted speech enhanced generalization. Our work introduced novel design paradigms for audio-based diagnostic tools and established the potential of social media data to train digital diagnostic models suitable for real-world deployment.

4.
Biomacromolecules ; 23(10): 4130-4140, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36149316

ABSTRACT

Constructing protein-network materials that exhibit physicochemical and mechanical properties of individual protein constituents requires molecular cross-linkers with specificity and stability. A well-known example involves specific chemical fusion of a four-arm polyethylene glycol (tetra-PEG) to desired proteins with secondary cross-linkers. However, it is necessary to investigate tetra-PEG-like biomolecular cross-linkers that are genetically fused to the proteins, simplifying synthesis by removing additional conjugation and purification steps. Non-covalently, self-associating, streptavidin homotetramer is a viable, biomolecular alternative to tetra-PEG. Here, a multi-arm streptavidin design is characterized as a protein-network material platform using various secondary, biomolecular cross-linkers, such as high-affinity physical (i.e., non-covalent), transient physical, spontaneous chemical (i.e., covalent), or stimuli-induced chemical cross-linkers. Stimuli-induced, chemical cross-linkers fused to multi-arm streptavidin nanohubs provide sufficient diffusion prior to initiating permanent covalent bonds, allowing proper characterization of streptavidin nanohubs. Surprisingly, non-covalently associated streptavidin nanohubs exhibit extreme stability, which translates into material properties that resemble hydrogels formed by chemical bonds even at high temperatures. Therefore, this study not only establishes that the streptavidin nanohub is an ideal multi-arm biopolymer precursor but also provides valuable guidance for designing self-assembling nanostructured molecular networks that can properly harness the extraordinary properties of protein-based building blocks.


Subject(s)
Hydrogels , Polyethylene Glycols , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Streptavidin
5.
Semin Intervent Radiol ; 38(5): 565-575, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34853503

ABSTRACT

Image-guided robotics for biopsy and ablation aims to minimize procedure times, reduce needle manipulations, radiation, and complications, and enable treatment of larger and more complex tumors, while facilitating standardization for more uniform and improved outcomes. Robotic navigation of needles enables standardized and uniform procedures which enhance reproducibility via real-time precision feedback, while avoiding radiation exposure to the operator. Robots can be integrated with computed tomography (CT), cone beam CT, magnetic resonance imaging, and ultrasound and through various techniques, including stereotaxy, table-mounted, floor-mounted, and patient-mounted robots. The history, challenges, solutions, and questions facing the field of interventional radiology (IR) and interventional oncology are reviewed, to enable responsible clinical adoption and value definition via ergonomics, workflows, business models, and outcome data. IR-integrated robotics is ready for broader adoption. The robots are coming!

SELECTION OF CITATIONS
SEARCH DETAIL
...