ABSTRACT
Drinking water security in Puerto Rico (PR) is increasingly challenged by both regulated and emerging anthropogenic contaminants, which was exacerbated by the Hurricane Maria (HM) due to impaired regional water cycle and damaged water infrastructure. Leveraging the NIEHS PROTECT (Puerto Rico Testsite for Exploring Contamination Threats) cohort, this study assessed the long-term tap water (TW) quality changes from March 2018 to November 2018 after HM in PR, by innovatively integrating two different effect-based quantitative toxicity assays with a targeted analysis of 200 organic and 22 inorganic pollutants. Post-hurricane PR TW quality showed recovery after >6-month period as indicated by the decreased number of contaminants showing elevated average concentrations relative to pre-hurricane samples, with significant difference of both chemical and toxicity levels between northern and southern PR. Molecular toxicity profiling and correlation revealed that the HM-accelerated releases of certain pesticides and PPCPs could exert increased cellular oxidative and/or AhR (aryl hydrocarbon receptor)-mediated activities that may persist for more than six months after HM. Maximum cumulative ratio and adverse outcome pathway (AOP) assessment identified the top ranked detected TW contaminants (Cu, Sr, V, perfluorooctanoic acid) that potentially associated with different adverse health effects such as inflammation, impaired reproductive systems, cancers/tumors, and/or organ toxicity. These insights can be incorporated into the regulatory framework for post-disaster risk assessment, guiding water quality control and management for public health protection.