Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 21(2): 187-200, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16427009

ABSTRACT

MDC1 functions in checkpoint activation and DNA repair following DNA damage. To address the physiological role of MDC1, we disrupted the MDC1 gene in mice. MDC1-/- mice recapitulated many phenotypes of H2AX-/- mice, including growth retardation, male infertility, immune defects, chromosome instability, DNA repair defects, and radiation sensitivity. At the molecular level, H2AX, MDC1, and ATM form a positive feedback loop, with MDC1 directly mediating the interaction between H2AX and ATM. MDC1 binds phosphorylated H2AX through its BRCT domain and ATM through its FHA domain. Through these interactions, MDC1 accumulates activated ATM flanking the sites of DNA damage, facilitating further ATM-dependent phosphorylation of H2AX and the amplification of DNA damage signals. In the absence of MDC1, many downstream ATM signaling events are defective. These results suggest that MDC1, as a signal amplifier of the ATM pathway, is vital in controlling proper DNA damage response and maintaining genomic stability.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Female , Genomic Instability , Infertility, Male/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Signal Transduction , Trans-Activators
2.
J Biol Chem ; 279(51): 53770-81, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15456773

ABSTRACT

The ribonucleoprotein telomerase is a specialized reverse transcriptase minimally composed of an RNA, TER, and a protein catalytic subunit, TERT. The TER and TERT subunits of telomerase associate to form a dimeric enzyme in several organisms, including human. A small portion of TER, the template domain, is used by telomerase for the synthesis of tandem repeats of telomeric DNA. We studied some of the requirements for processive template usage by human telomerase. A blunt-ended duplex DNA primer was not utilized by telomerase. With a duplex telomeric DNA primer, a single-stranded 3' overhang with a minimum length of approximately 6 bases was required for efficient priming activity. Large substitutions in the human TER templating domain did not abolish enzymatic activity, although insertion of two residues into this sequence reduced processivity, as did a template mutation that results in a mismatch between the template region used for copying DNA and the region used for alignment of the substrate primer. Finally, by using a complementary pair of catalytically inactive telomerase RNA pseudoknot mutants in combination with a marked template, we demonstrated that processive synthesis by an obligatory dimer of human telomerase does not require template switching. These results indicate that processive template usage by human telomerase, like that of Tetrahymena telomerase, is strongly dependent on the base identities in the template domain and that a dimeric human telomerase can processively utilize a single template.


Subject(s)
Polymerase Chain Reaction/methods , Telomerase/metabolism , Base Pair Mismatch , Catalysis , DNA/chemistry , DNA Primers/chemistry , DNA Primers/genetics , Dimerization , HeLa Cells , Humans , Models, Genetic , Mutation , Protein Structure, Tertiary , RNA/metabolism , Telomerase/genetics
3.
Genes Dev ; 17(9): 1078-83, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12730131

ABSTRACT

The integral RNA (hTER) of the human telomerase ribonucleoprotein has a conserved secondary structure that contains a potential pseudoknot. Here we examine the role of an intermolecular hTER-hTER interaction in the previously reported functional dimerization of telomerase. We provide evidence that the two conserved, complementary sequences of one stem of the hTER pseudoknot domain can pair intermolecularly in vitro, and that formation of this stem as part of a novel "trans-pseudoknot" is required for telomerase to be active in its dimeric form. Such RNA-RNA interaction mirrors a known property of retroviral reverse transcriptases, which use homodimeric viral genomic RNA substrates.


Subject(s)
RNA/metabolism , Telomerase/metabolism , Dimerization , Humans , Mutation , Telomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...