Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 3(6)2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23111872

ABSTRACT

Dermatophytes are a uniquely pathogenic group of fungi that cause most common fungal infections globally. The major cause of athlete's foot is Trichophyton rubrum, a pathogen of human skin. A recent paper in this journal reported the sequencing and analysis of five additional genome sequences, including that of Trichophyton rubrum. These five join the existing two additional genome sequences to bring the total to seven dermatophyte genome sequences, a notable milestone in the study of these fungi. These additional genomes set the stage for future genome-supported studies on the biology, pathogenicity, and host specificity of this important group of pathogens. To predict how this future might play out, we review the history of Aspergillus genomics since the initial publication of the first three Aspergillus genome sequences in 2005, an event that stimulated important studies of the pathogenic Aspergillus species. From these 7 years of Aspergillus history, we offer some speculation on the future of dermatophyte studies supported by the genome sequences given the similarities, differences, and relative levels of support for studies in these two groups of fungi and the diseases they cause.


Subject(s)
Arthrodermataceae/genetics , Aspergillus/genetics , Genome, Fungal , Genomics/methods , Trichophyton/genetics , Arthrodermataceae/pathogenicity , Aspergillus/pathogenicity , Genomics/trends , Trichophyton/pathogenicity
2.
Cancer Res ; 72(13): 3290-301, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22552293

ABSTRACT

Human malignant mesothelioma is an aggressive and highly lethal cancer that is believed to be caused by chronic exposure to asbestos and erionite. Prognosis for this cancer is generally poor because of late-stage diagnosis and resistance to current conventional therapies. The damage-associated molecular pattern protein HMGB1 has been implicated previously in transformation of mesothelial cells. Here we show that HMGB1 establishes an autocrine circuit in malignant mesothelioma cells that influences their proliferation and survival. Malignant mesothelioma cells strongly expressed HMGB1 and secreted it at high levels in vitro. Accordingly, HMGB1 levels in malignant mesothelioma patient sera were higher than that found in healthy individuals. The motility, survival, and anchorage-independent growth of HMGB1-secreting malignant mesothelioma cells was inhibited in vitro by treatment with monoclonal antibodies directed against HMGB1 or against the receptor for advanced glycation end products, a putative HMGB1 receptor. HMGB1 inhibition in vivo reduced the growth of malignant mesothelioma xenografts in severe-combined immunodeficient mice and extended host survival. Taken together, our findings indicate that malignant mesothelioma cells rely on HMGB1, and they offer a preclinical proof-of-principle that antibody-mediated ablation of HMBG1 is sufficient to elicit therapeutic activity, suggesting a novel therapeutic approach for malignant mesothelioma treatment.


Subject(s)
HMGB1 Protein/metabolism , Mesothelioma/metabolism , Animals , Blotting, Western , Disease Progression , Enzyme-Linked Immunosorbent Assay , HMGB1 Protein/physiology , Humans , Immunohistochemistry , Mesothelioma/pathology , Mice , Transplantation, Heterologous , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 108(33): 13618-23, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21788493

ABSTRACT

Exposure to erionite, an asbestos-like mineral, causes unprecedented rates of malignant mesothelioma (MM) mortality in some Turkish villages. Erionite deposits are present in at least 12 US states. We investigated whether increased urban development has led to erionite exposure in the United States and after preliminary exploration, focused our studies on Dunn County, North Dakota (ND). In Dunn County, ND, we discovered that over the past three decades, more than 300 miles of roads were surfaced with erionite-containing gravel. To determine potential health implications, we compared erionite from the Turkish villages to that from ND. Our study evaluated airborne point exposure concentrations, examined the physical and chemical properties of erionite, and examined the hallmarks of mesothelial cell transformation in vitro and in vivo. Airborne erionite concentrations measured in ND along roadsides, indoors, and inside vehicles, including school buses, equaled or exceeded concentrations in Boyali, where 6.25% of all deaths are caused by MM. With the exception of outdoor samples along roadsides, ND concentrations were lower than those measured in Turkish villages with MM mortality ranging from 20 to 50%. The physical and chemical properties of erionite from Turkey and ND are very similar and they showed identical biological activities. Considering the known 30- to 60-y latency for MM development, there is reason for concern for increased risk in ND in the future. Our findings indicate that implementation of novel preventive and early detection programs in ND and other erionite-rich areas of the United States, similar to efforts currently being undertaken in Turkey, is warranted.


Subject(s)
Environmental Exposure/adverse effects , Mesothelioma/chemically induced , Zeolites/adverse effects , Air Pollutants/adverse effects , Asbestos/adverse effects , Humans , Mesothelioma/epidemiology , Mesothelioma/etiology , North Dakota/epidemiology , Transportation , Turkey/epidemiology , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...