Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0268546, 2022.
Article in English | MEDLINE | ID: mdl-35588401

ABSTRACT

In humid and temperate areas, Septoria nodorum blotch (SNB) is a major fungal disease of common wheat (Triticum aestivum L.) in which grain yield is reduced when the pathogen, Parastagonospora nodorum, infects leaves and glumes during grain filling. Foliar SNB susceptibility may be associated with sensitivity to P. nodorum necrotrophic effectors (NEs). Both foliar and glume susceptibility are quantitative, and the underlying genetics are not understood in detail. We genetically mapped resistance quantitative trait loci (QTL) to leaf and glume blotch using a double haploid (DH) population derived from the cross between the moderately susceptible cultivar AGS2033 and the resistant breeding line GA03185-12LE29. The population was evaluated for SNB resistance in the field in four successive years (2018-2021). We identified major heading date (HD) and plant height (PH) variants on chromosomes 2A and 2D, co-located with SNB escape mechanisms. Five QTL with small effects associated with adult plant resistance to SNB leaf and glume blotch were detected on 1A, 1B, and 6B linkage groups. These QTL explained a relatively small proportion of the total phenotypic variation, ranging from 5.6 to 11.8%. The small-effect QTL detected in this study did not overlap with QTL associated with morphological and developmental traits, and thus are sources of resistance to SNB.


Subject(s)
Quantitative Trait Loci , Triticum , Ascomycota , Disease Resistance/genetics , Phenotype , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Triticum/genetics , Triticum/microbiology
2.
Genes (Basel) ; 12(5)2021 04 28.
Article in English | MEDLINE | ID: mdl-33924915

ABSTRACT

Genetic analysis of brown midrib sorghum (Sorghum bicolor) mutant lines assembled in our program has previously shown that the mutations fall into four allelic groups, bmr2, bmr6, bmr12 or bmr19. Causal genes for allelic groups bmr2, bmr6 and bmr12, have since been identified. In this report, we provide evidence for the nature of the bmr19 mutation. This was accomplished by introgressing each of the four bmr alleles into nine different genetic backgrounds. Polymorphisms from four resequenced bulks of sorghum introgression lines containing either mutation, relative to those of a resequenced bulk of the nine normal midrib recurrent parent lines, were used to locate their respective causal mutations. The analysis confirmed the previously reported causal mutations for bmr2 and bmr6 but failed in the case of bmr12-bulk due to a mixture of mutant alleles at the locus among members of that mutant bulk. In the bmr19-bulk, a common G → A mutation was found among all members in Sobic.001G535500. This gene encodes a putative folylpolyglutamate synthase with high homology to maize Bm4. The brown midrib phenotype co-segregated with this point mutation in two separate F2 populations. Furthermore, an additional variant allele at this locus obtained from a TILLING population also showed a brown midrib phenotype, confirming this locus as Bmr19.


Subject(s)
Folic Acid/metabolism , Lignin/biosynthesis , Peptide Synthases/genetics , Plant Proteins/genetics , Sorghum/genetics , Folic Acid/genetics , Genetic Background , Lignin/genetics , Peptide Synthases/metabolism , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Sorghum/metabolism
3.
Front Plant Sci ; 10: 1142, 2019.
Article in English | MEDLINE | ID: mdl-31616450

ABSTRACT

Public appetite for fossil fuels continues to drive energy prices and foment the build-up of intractable environmental problems. Ethanol (ETOH) production from lignocellulosic biomass grown in marginal lands offers a sustainable alternative without diverting arable land from food and feed production. The quantity and quality of lignocellulosic biomass can be enhanced by the abundant genetic diversity for biomass production as well as stem sugar and lignin composition in sorghum (Sorghum bicolor L. Moench). The objective of this study was to assess yield and quality of lignocellulosic biomass enhancement for ethanol production potential in a population of sorghum derived from two cultivars with contrasting biomass yield and compositional traits. We tested 236 recombinant inbred lines (RIL) of sorghum in a randomized complete block design (RCBD) with two replications for lignocellulosic biomass performance and determined hemicellulose, cellulose and lignin concentrations through detergent fiber analysis (DFA). The stover compositional values were used to estimate theoretical ethanol yield (ETOH on a mass basis) and production (ETOH on an area basis). Results showed that RIL carrying the brown midrib mutation had significantly higher theoretical glucose recovery (released glucose from cellulose, > 200 g kg-1). Those carrying both mutations, had high theoretical ethanol yield (>400 L ton-1) and high theoretical ethanol production (>14,500 L ha-1). Lignin concentration was determined as most reliable predictor (R2 = 0.67) for glucose recovery. Lignin and stem sugar concentrations (R2 = 0.46 and 0.35, respectively) were good predictors for ethanol yield. Stover yield traits (R2 = 0.89) were most important determinants for ethanol production. Our findings suggest that careful breeding of sorghum for genetic enhancement of biomass quantity and quality could double lignocellulosic ethanol yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...