Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2602, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297106

ABSTRACT

Based on anti-inflammatory and osteogenic properties of hesperidin (HE), we hypothesized its systemic administration could be a cost-effective method of improving BMP-induced bone regeneration. Sprague-Dawley rats were allocated into 4 groups (n = 10/group): a 5-mm critical-sized mandible defect + collagen scaffold or, scaffold + 1 µg of BMP2 with and without dietary HE at 100 mg/kg. HE was administered by oral gavage 4 weeks prior to surgeries until euthanasia at day 7 or 14 post-surgery. The healing tissue within the defect collected at day 7 was subjected to gene expression analysis. Mandibles harvested at day 14 were subjected to microcomputed tomography and histology. HE + BMP2-treated rats had a statistically significant decrease in expression of inflammatory genes compared to BMP2 alone. The high-dose BMP2 alone caused cystic-like regeneration with incomplete defect closure. HE + BMP2 showed virtually complete bone fusion. Collagen fibril birefringence pattern (red color) under polarized light indicated high organization in BMP2-induced newly formed bone (NFB) in HE-supplemented group (p < 0.05). Clear changes in osteocyte lacunae as well as a statistically significant increase in osteoclasts were found around NFB in HE-treated rats. A significant increase in trabecular volume and thickness, and trabecular and cortical density was found in femurs of HE-supplemented rats (p < 0.05). Our findings show, for the first time, that dietary HE has a remarkable modulatory role in the function of locally delivered high-dose BMP2 in bone regeneration possibly via control of inflammation, osteogenesis, changes in osteocyte and osteoclast function and collagen maturation in regenerated and native bone. In conclusion, HE had a significant skeletal bone sparing effect and the ability to provide a more effective BMP-induced craniofacial regeneration.


Subject(s)
Hesperidin , Rats , Animals , Rats, Sprague-Dawley , Hesperidin/pharmacology , X-Ray Microtomography , Bone Regeneration , Osteogenesis , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/genetics , Collagen/pharmacology , Inflammation
2.
Res Sq ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37841854

ABSTRACT

Based on anti-inflammatory and osteogenic properties of hesperidin (HE), we hypothesized its systemic administration could be a cost-effective method of improving BMP-induced bone regeneration. Sprague-Dawley rats were allocated into 4 groups (n=10/group): a 5-mm critical-sized mandible defect + collagen scaffold or, scaffold + 1 µg of BMP2 with and without dietary HE at 100 mg/kg. HE was administered by oral gavage 4 weeks prior to surgeries until euthanasia at day 7 or 14. The healing tissue within the defect collected at day 7 was subjected to gene expression analysis. Mandibles harvested at day 14 were subjected to microcomputed tomography and histology. HE+BMP2-treated rats had a statistically significant decrease in expression of inflammatory genes compared to BMP2 alone. The high-dose BMP2 caused cystic-like regeneration with incomplete defect closure. HE+BMP2 showed virtually complete bone fusion. Red collagen fibrils were significantly higher in BMP2-induced newly formed bone (NFB) in HE-supplemented group (p<0.05) indicating high organization. Clear changes in osteocyte lacunae as well as a statistically significant increase in osteoclasts were found around NFB in HE rats. A significant increase in trabecular volume and thickness, and trabecular and cortical density was found in femurs of HE-supplemented rats (p<0.05). Our findings show, for the first time, that dietary HE has a remarkable modulatory role in locally delivered high-dose BMP2-induced bone possibly via control of inflammation, osteogenesis, changes in osteocyte and osteoclast function and collagen maturation in regenerated and native bone. In conclusion, HE has a significant skeletal bone sparing effect and the ability to provide a more effective BMP-induced craniofacial regeneration.

3.
Int J Mol Sci ; 23(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35806105

ABSTRACT

This study aimed to evaluate the effects of hesperidin (HE) on in vitro osteoclastogenesis and dietary supplementation on mouse periodontal disease and femoral bone phenotype. RAW 264.7 cells were stimulated with RANKL in the presence or absence of HE (1, 100 or 500 µM) for 5 days, and evaluated by TRAP, TUNEL and Western Blot (WB) analyses. In vivo, C57BL/6 mice were given HE via oral gavage (125, 250 and 500 mg/kg) for 4 weeks. A sterile silk ligature was placed between the first and second right maxillary molars for 10 days and microcomputed tomography (µCT), histopathological and immunohistochemical evaluation were performed. Femoral bones subjected or not to dietary HE (500 mg/kg) for 6 and 12 weeks were evaluated using µCT. In vitro, HE 500 µM reduced formation of RANKL-stimulated TRAP-positive(+) multinucleated cells (500 µM) as well as c-Fos and NFATc1 protein expression (p < 0.05), markers of osteoclasts. In vivo, dietary HE 500 mg/kg increased the alveolar bone resorption in ligated teeth (p < 0.05) and resulted in a significant increase in TRAP+ cells (p < 0.05). Gingival inflammatory infiltrate was greater in the HE 500 mg/kg group even in the absence of ligature. In femurs, HE 500 mg/kg protected trabecular and cortical bone mass at 6 weeks of treatment. In conclusion, HE impaired in vitro osteoclastogenesis, but on the contrary, oral administration of a high concentration of dietary HE increased osteoclast numbers and promoted inflammation-induced alveolar bone loss. However, HE at 500 mg/kg can promote a bone-sparing effect on skeletal bone under physiological conditions.


Subject(s)
Alveolar Bone Loss , Bone Resorption , Hesperidin , Alveolar Bone Loss/pathology , Animals , Bone Resorption/metabolism , Cell Differentiation , Hesperidin/pharmacology , Homeostasis , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/metabolism , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...