Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892404

ABSTRACT

Reproductive failure in dogs is often due to unknown causes, and correct diagnosis and treatment are not always achieved. This condition is associated with various congenital and acquired etiologies that develop inflammatory processes, causing an increase in the number of leukocytes within the female reproductive tract (FRT). An encounter between polymorphonuclear neutrophils (PMNs) and infectious agents or inflammation in the FRT could trigger neutrophil extracellular traps (NETs), which are associated with significantly decreased motility and damage to sperm functional parameters in other species, including humans. This study describes the interaction between canine PMNs and spermatozoa and characterizes the release of NETs, in addition to evaluating the consequences of these structures on canine sperm function. To identify and visualize NETs, May-Grünwald Giemsa staining and immunofluorescence for neutrophil elastase (NE) were performed on canine semen samples and sperm/PMN co-cultures. Sperm viability was assessed using SYBR/PI and acrosome integrity was assessed using PNA-FITC/PI by flow cytometry. The results demonstrate NETs release in native semen samples and PMN/sperm co-cultures. In addition, NETs negatively affect canine sperm function parameters. This is the first report on the ability of NETs to efficiently entrap canine spermatozoa, and to provide additional data on the adverse effects of NETs on male gametes. Therefore, NETs formation should be considered in future studies of canine reproductive failure, as these extracellular fibers and NET-derived pro-inflammatory capacities will impede proper oocyte fertilization and embryo implantation. These data will serve as a basis to explain certain reproductive failures of dogs and provide new information about triggers and molecules involved in adverse effects of NETosis for domestic pet animals.


Subject(s)
Extracellular Traps , Neutrophils , Spermatozoa , Animals , Dogs , Extracellular Traps/metabolism , Male , Spermatozoa/metabolism , Neutrophils/metabolism , Sperm Motility , Female , Leukocyte Elastase/metabolism , Coculture Techniques , Acrosome/metabolism
2.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929172

ABSTRACT

Bovine spermatozoa are highly susceptible to oxidative stress (OS), and it is known to affect their cellular functions. The main leukocyte producers of reactive oxygen species (ROS) in mammalian semen are polymorphonuclear neutrophils (PMN). PMN activation can result in the formation of neutrophil extracellular traps (NETs), which have been shown to affect the motility and function of spermatozoa. However, OS effects on bull spermatozoa derived from individual NETs components have not been investigated. The hypothesis of this study was that specific NETs components might generate OS on bull spermatozoa. Bovine sperm cells were incubated with five NETs-associated molecules, including 30 µg/mL histone 2A (H2A), neutrophil elastase (NE), 1 µg/mL myeloperoxidase (MPO), cathepsin G (Cat-G), and cathelicidin LL37 (LL-37), for a time course ranging from 15 to 240 min. Fluorescence microscopy was used to evaluate the coincubation of bovine PMN and sperm cells. Within 15 min, H2A, NE, and LL-37 caused membrane disruption, while MPO and Cat-G caused OS on bull spermatozoa after 1 h of coincubation. NET formation was observed within 15 min of coincubation in co-cultures of bovine PMN/sperm cells. This study is the first to report on the role of cytotoxic OS effects caused by NETs-derived components in bovine sperm in vitro.

3.
Res Vet Sci ; 164: 105028, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804665

ABSTRACT

In cattle, clinical and subclinical inflammation in the bovine female reproductive tract (FRT) significantly reduces fertility. PMN participate in this FRT-associated inflammation by eliminating pathogens by eliciting various defense mechanisms, with the release of neutrophil extracellular traps NETs) being the latest process discovered. Consistently, human-, bovine- and porcine-derived spermatozoa induce release of NETs in exposed PMN of the same species origin, and thereby decreasing sperm motility through NETs-mediated entrapment. The release of NETs in the presence of different sperm sub-populations is evaluated in this work. Cryopreserved bovine sperm were selected and different sperm populations were used: viable sperm, sperm with oxidative stress, capacitated sperm, and sperm with loss of viability. Isolated PMN of dairy cows were co-incubated with these sperm populations for 4 h. Neutrophil elastase (NE) and DNA were detected by fluorescence microscopy analysis. It was noted that exposed bovine PMN released NETs in the presence of sperm. Moreover, sperm-triggered NETosis resulted different phenotypes of NETs, i. e. spread NETs (sprNETs), diffused NETs (diffNETs) and aggregated NETs (aggNETs). Viable/motile spermatozoa induced a higher proportion of NETotic cells at 15, 60 and 120 min in comparison to controls. In conclusion, all bovine sperm populations in co-culture with PMN generated NETs extrusion while viable sperm activated NETotic cells to a greater extent. With this being an early event in the activation of bovine PMN.


Subject(s)
Cattle Diseases , Extracellular Traps , Swine Diseases , Cattle , Male , Animals , Female , Humans , Swine , Extracellular Traps/physiology , Neutrophils , Semen , Sperm Motility , Spermatozoa , Inflammation/veterinary
4.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291053

ABSTRACT

Infectious vaginitis is a microbiological syndrome of great importance in public health that affects millions of women worldwide. However, no studies have explored the phenomenon of the production of the neutrophil extracellular traps (NETs) that are released into the female reproductive tract in these pathologies. This study aimed to determine the presence of NETosis in vaginal discharges of women with bacterial vaginosis, candidiasis, and trichomoniasis by characterizing NETs. Extracellular DNA with neutrophil elastase and citrullinated histones was identified to confirm the NET components (n = 10). The concentration, phenotypes of NETs, and number of NETotic cells were determined. The results showed an increase in NETotic cells in women with Candida albicans (CA) and Trichomonas vaginalis (TV) and an increase in NETs in TV-induced vaginitis. Samples of CA- and TV-infected women showed different NET phenotypes (diffNETs, sprNETs, and aggNETs); diffNETs were found in high concentrations in samples with CA and were increased in three types of NETs in TV infections. Samples with intermediate microbiota and bacterial vaginosis showed increased NETotic cells while the intermediate microbiota presented a higher concentration of NETs. Therefore, alterations in the microbiota and the presence of fungal and parasitic infections are important stimuli for the activation and induction of NETosis, and their cytotoxic effects could enhance tissue damage.


Subject(s)
Candidiasis, Vulvovaginal , Extracellular Traps , Trichomonas Vaginitis , Trichomonas vaginalis , Vaginal Discharge , Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/microbiology , Leukocyte Elastase , Candidiasis, Vulvovaginal/microbiology , Histones , Trichomonas Vaginitis/microbiology , Candida albicans
5.
Animals (Basel) ; 12(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35625154

ABSTRACT

Neutrophil extracellular traps (NETs) play a key role in fertilisation by eliminating microorganisms and entrapping spermatozoa in the female reproductive tract (FRT). The deleterious effects of NETs on spermatozoa have been previously described; however, individual exposure to NET-derived components in bull spermatozoa has not been explored. The aim of this study was to evaluate the effects of the main NET-derived proteins, histone 2A (H2A), neutrophil elastase (ELA), myeloperoxidase (MPO), pentraxin 3 (PTX), cathepsin G (Cat-G), and cathelicidin LL37 (LL-37), at concentrations of 1, 10, and 30 µg/mL, on sperm parameters. Sperm were selected and incubated with different NET-derived proteins for 4 h. Membrane and acrosome integrity, lipoperoxidation, and membrane phospholipid disorders were also evaluated. Bovine polymorphonuclear neutrophil (PMN)/sperm co-cultures were evaluated by scanning electron microscopy and immunofluorescence. All NET-derived proteins/enzymes resulted in a reduction in membrane integrity, acrosome integrity, and lipoperoxidation at a concentration of 30 µg/mL. Bovine PMN/sperm co-cultures showed marked NET formation in the second hour. In conclusion, all NET-derived proteins/enzymes exerted cytotoxic effects on bull sperm, and this effect should be considered in future investigations on the uterine microenvironment and the advancement of spermatozoa in the FRT.

SELECTION OF CITATIONS
SEARCH DETAIL
...