Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rev ; 75(5): 854-884, 2023 09.
Article in English | MEDLINE | ID: mdl-37028945

ABSTRACT

The two ß-arrestins, ß-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both ß-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how ß-arrestins bind to activated GPCRs and downstream effector proteins. Studies with ß-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by ß-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on ß-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of ß-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific ß-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two ß-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with ß-arrestin mutant mice and cultured cells, complemented by novel insights into ß-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific ß-arrestin functions.


Subject(s)
Arrestins , Signal Transduction , Mice , Animals , beta-Arrestins/metabolism , Arrestins/chemistry , Arrestins/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism
2.
Am J Physiol Endocrinol Metab ; 324(1): E73-E84, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36476039

ABSTRACT

Endothelin-1 (ET-1) is elevated in patients with systemic lupus erythematosus (SLE), an autoimmune disease characterized by high rates of hypertension, renal injury, and cardiovascular disease. SLE is also associated with an increased prevalence of obesity and insulin resistance compared to the general population. In the present study, we tested the hypothesis that elevated ET-1 in SLE contributes to obesity and insulin resistance. For these studies, we used the NZBWF1 mouse model of SLE, which develops obesity and insulin resistance on a normal chow diet. To test this hypothesis, we treated control (NZW) and SLE (NZBWF1) mice with vehicle, atrasentan (ETA receptor antagonist, 10 mg/kg/day), or bosentan (ETA/ETB receptor antagonist, 100 mg/kg/day) for 4 wk. Neither treatment impacted circulating immunoglobulin levels, but treatment with bosentan lowered anti-dsDNA IgG levels, a marker of SLE disease activity. Treatment with atrasentan and bosentan decreased glomerulosclerosis, and atrasentan lowered renal T-cell infiltration. Body weight was lower in SLE mice treated with atrasentan or bosentan. Endothelin receptor antagonism also improved hyperinsulinemia, homeostatic model assessment for insulin resistance, and glucose tolerance in SLE mice. Adipose tissue inflammation was also improved by endothelin receptor blockade. Taken together, these data suggest a potential therapeutic benefit for SLE patients with obesity and insulin resistance.NEW & NOTEWORTHY SLE is an autoimmune disease that is associated with obesity, insulin resistance, and elevated endothelin-1. The present study demonstrated that pharmacological inhibition of endothelin receptors decreased body weight, insulin resistance, and adipose tissue inflammation in a murine model of SLE. The therapeutic potential of endothelin receptor antagonists to treat obesity-related diseases and pathophysiological conditions, such as autoimmune diseases and insulin resistance, has become increasingly clear.


Subject(s)
Insulin Resistance , Lupus Erythematosus, Systemic , Mice , Humans , Animals , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Atrasentan , Bosentan , Endothelin-1 , Adipose Tissue , Obesity/drug therapy , Obesity/complications , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/drug therapy , Body Weight , Inflammation/drug therapy , Receptors, Endothelin , Models, Theoretical , Glucose , Receptor, Endothelin A
3.
Clin Sci (Lond) ; 135(14): 1773-1789, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34278410

ABSTRACT

Endothelin-1 (ET-1) is elevated in patients with obesity; however, its contribution to the pathophysiology related to obesity is not fully understood. We hypothesized that high ET-1 levels cause dyslipidemia, inflammation, and insulin resistance within the adipose tissue of obese mice. To test this hypothesis, male C57BL/6J mice were fed either normal diet (NMD) or high-fat diet (HFD) for 8 weeks followed by 2 weeks of treatment with either vehicle, atrasentan (ETA receptor antagonist, 10 mg/kg/day) or bosentan (ETA/ETB receptor antagonist, 100 mg/kg/day). Atrasentan and bosentan lowered circulating non-esterified free fatty acids and triglycerides seen in HFD mice, while atrasentan-treated mice had significantly lower liver triglycerides compared with non-treated HFD mice. ET-1 receptor blockade significantly improved insulin tolerance compared with insulin-resistant HFD mice and lowered expression of genes in epididymal white adipose tissue (eWAT) associated with insulin resistance and inflammation. Flow cytometric analyses of eWAT indicated that HFD mice had significantly higher percentages of both CD4+ and CD8+ T cells compared with NMD mice, which was attenuated by treatment with atrasentan or bosentan. Atrasentan treatment also abolished the decrease in eosinophils seen in HFD mice. Taken together, these data indicate that ETA and ETA/ETB receptor blockade improves peripheral glucose homeostasis, dyslipidemia and liver triglycerides, and also attenuates the pro-inflammatory immune profile in eWAT of mice fed HFD. These data suggest a potential use for ETA and ETA/ETB receptor blockers in the treatment of obesity-associated dyslipidemia and insulin resistance.


Subject(s)
Dyslipidemias/metabolism , Endothelin Receptor Antagonists/pharmacology , Glucose/metabolism , Inflammation/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Diet, High-Fat/methods , Endothelin A Receptor Antagonists/pharmacology , Insulin Resistance/physiology , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese
4.
Obes Rev ; 21(12): e13086, 2020 12.
Article in English | MEDLINE | ID: mdl-32627269

ABSTRACT

The association between plasma endothelin-1 (ET-1) and obesity has been documented for decades, yet the contribution of ET-1 to risk factors associated with obesity is not fully understood. In 1994, one of first papers to document this association also noted a positive correlation between plasma insulin and ET-1, suggesting a potential contribution of ET-1 to the development of insulin resistance. Both endogenous receptors for ET-1, ETA and ETB are present in all insulin-sensitive tissues including adipose, liver and muscle, and ET-1 actions within these tissues suggest that ET-1 may be playing a role in the pathogenesis of insulin resistance. Further, antagonists for ET-1 receptors are clinically approved making these sites attractive therapeutic targets. This review focuses on known mechanisms through which ET-1 affects plasma lipid profiles and insulin signalling in these metabolically important tissues and also identifies gaps in our understanding of ET-1 in obesity-related pathophysiology.


Subject(s)
Endothelin-1 , Insulin Resistance , Obesity/physiopathology , Endothelin-1/physiology , Humans , Receptor, Endothelin A/physiology
5.
Can J Physiol Pharmacol ; 98(9): 604-610, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32083942

ABSTRACT

High salt intake (HS) is associated with obesity and insulin resistance. ET-1, a peptide released in response to HS, inhibits the actions of insulin on cultured adipocytes through ET-1 type B (ETB) receptors; however, the in vivo implications of ETB receptor activation on lipid metabolism and insulin resistance is unknown. We hypothesized that activation of ETB receptors in response to HS intake promotes dyslipidemia and insulin resistance. In normal salt (NS) fed rats, no significant difference in body mass or epididymal fat mass was observed between control and ETB deficient rats. After 2 weeks of HS, ETB-deficient rats had significantly lower body mass and epididymal fat mass compared to controls. Nonfasting plasma glucose was not different between genotypes; however, plasma insulin concentration was significantly lower in ETB-deficient rats compared to controls, suggesting improved insulin sensitivity. In addition, ETB-deficient rats had higher circulating free fatty acids in both NS and HS groups, with no difference in plasma triglycerides between genotypes. In a separate experiment, ETB-deficient rats had significantly lower fasting blood glucose and improved glucose and insulin tolerance compared to controls. These data suggest that ET-1 promotes adipose deposition and insulin resistance via the ETB receptor.


Subject(s)
Dyslipidemias/metabolism , Endothelin-1/metabolism , Insulin Resistance , Insulin/metabolism , Receptor, Endothelin B/deficiency , Adipose Tissue/metabolism , Adiposity , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Body Weight , Disease Models, Animal , Dyslipidemias/blood , Dyslipidemias/etiology , Fatty Acids, Nonesterified/blood , Humans , Insulin/blood , Male , Mutation , Rats , Rats, Transgenic , Receptor, Endothelin B/genetics , Sodium Chloride, Dietary/adverse effects
6.
Basic Res Cardiol ; 114(2): 6, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635789

ABSTRACT

Cardiac fibroblasts are the major producers of extracellular matrix (ECM) to form infarct scar. We hypothesized that fibroblasts undergo a spectrum of phenotype states over the course of myocardial infarction (MI) from early onset to scar formation. Fibroblasts were isolated from the infarct region of C57BL/6J male mice (3-6 months old, n = 60) at days 0 (no MI control) and 1, 3, or 7 after MI. Whole transcriptome analysis was performed by RNA-sequencing. Of the genes sequenced, 3371 were differentially expressed after MI. Enrichment analysis revealed that MI day 1 fibroblasts displayed pro-inflammatory, leukocyte-recruiting, pro-survival, and anti-migratory phenotype through Tnfrsf9 and CD137 signaling. MI day 3 fibroblasts had a proliferative, pro-fibrotic, and pro-angiogenic profile with elevated Il4ra signaling. MI day 7 fibroblasts showed an anti-angiogenic homeostatic-like myofibroblast profile and with a step-wise increase in Acta2 expression. MI day 7 fibroblasts relied on Pik3r3 signaling to mediate Tgfb1 effects and Fgfr2 to regulate PI3K signaling. In vitro, the day 3 MI fibroblast secretome stimulated angiogenesis, while day 7 MI fibroblast secretome repressed angiogenesis through Thbs1 signaling. Our results reveal novel mechanisms for fibroblasts in expressing pro-inflammatory molecules and regulating angiogenesis following MI.


Subject(s)
Inflammation/physiopathology , Myocardial Infarction/physiopathology , Myofibroblasts/metabolism , Neovascularization, Physiologic/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Myofibroblasts/cytology , Phenotype , Ventricular Remodeling/physiology , Wound Healing/physiology
7.
Pharmacol Res ; 137: 252-258, 2018 11.
Article in English | MEDLINE | ID: mdl-30394317

ABSTRACT

Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell clearance, and stimulate scar formation. Previously identified RPFs include mediators derived from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 (MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic efficacy in the setting of MI.


Subject(s)
Matrix Metalloproteinase 12/physiology , Myocardial Infarction/metabolism , Animals , Humans
8.
Basic Res Cardiol ; 113(4): 26, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29868933

ABSTRACT

In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.


Subject(s)
Cell Plasticity , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Cell Plasticity/genetics , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Energy Metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Flow Cytometry , Gene Expression Profiling , Genotype , Inflammation Mediators/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Phagocytosis , Phenotype , Time Factors , Transcriptome , Ventricular Function, Left/genetics , Ventricular Remodeling/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...