Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxics ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38922119

ABSTRACT

This study investigates the occurrence and characteristics of macroplastic and polymer microparticles in the Urias coastal lagoon's beach sediments, in northwest Mexico. Coastal lagoons, productive and vulnerable ecosystems, are impacted significantly by anthropogenic activities, leadings to their pollution by various contaminants, including plastics. Our research involved sampling sediments from four sites within the lagoon that were influenced by different human activities such as fishing, aquaculture, thermoelectric power plant operations, industrial operations, and domestic wastewater discharge. Our methodology included collecting macroplastics and beach sediment samples, followed by laboratory analyses to identify the plastic debris' size, shape, color, and chemical composition. The results indicated a notable presence of macroplastic items (144), predominantly bags, styrofoam, and caps made of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). The polymer microparticles were mainly fibers, with cotton and polyester as the most common polymers, suggesting a significant contribution from clothing-related waste. The dominant colors of the microparticles were blue and transparent. High densities were observed in areas with slower water exchange. Our findings highlight the urgent need for better waste management practices to mitigate plastic pollution in coastal lagoons, preserving their ecological and economic functions.

2.
Mar Pollut Bull ; 194(Pt B): 115284, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37478783

ABSTRACT

This study investigates the potential of MPs as carriers of pollutants as they can strengthen bioaccumulation of toxic metals on marine organisms. For the first time, the interaction of the metal palladium (Pd) with the widespread MPs, both with increasing concentrations in water environments from anthropogenic sources, was tested. Mytilus galloprovincialis, an important seafood product, was exposed to Pd (24 h) in two ways: water-dissolved and MPs-adsorbed, with depuration followed for 144 h. Quantification of Pd in tissues shown an accumulation 2-3 times higher (59 % of initial Pd) for mussels exposed to MPs-adsorbed Pd and higher in digestive gland than when exposed to water-dissolved Pd (25 %; higher in gills). Additionally, it was demonstrated that Pd induced oxidative stress and altered the feeding behavior of mussels. Therefore, this work support MPs as being vectors of metals (i.e. Pd) to enhance their bioaccumulation on marine organisms which highlights ecological risk of these emerging pollutants.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Microplastics , Plastics/toxicity , Palladium/pharmacology , Bioaccumulation , Water Pollutants, Chemical/analysis , Seafood/analysis , Water
3.
Environ Sci Pollut Res Int ; 30(29): 73600-73611, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188938

ABSTRACT

Microplastics have been studied on biota and other environmental domains, such as soils. Despite the importance of groundwater as a resource for millions of people worldwide as drinking water and personal hygiene, domestic, agricultural, mining, and industrial purposes, there are very few studies concerning microplastics in this domain around the world. We present the first study in Latin America addressing this topic. Six capped boreholes were analyzed in terms of abundance, concentration, and chemical characterization, at three different depths, from a coastal aquifer in Northwest Mexico. This aquifer is highly permeable and affected by anthropogenic activities. A total of 330 microplastics were found in the eighteen samples. In terms of concentration, the interval ranged from 10 to 34 particles/L, with an average of 18.3 particles/L. Four synthetic polymers were identified: isotactic polypropylene (iPP), hydroxyethylcellulose (HEC), carboxylated polyvinyl chloride (PVC), and low-density polyethylene (LDPE); with iPP being the most abundant (55.8%) in each borehole. Agriculture activities and septic outflows are considered the potential regional sources of these contaminants into the aquifer. Three possible transport pathways to the aquifer are suggested: (1) marine intrusion, (2) marsh intrusion, and (3) infiltration through the soil. More research about the occurrence, concentration, and distribution of the different kinds of microplastics in groundwater is needed to have a better understanding of the behavior and health risks to organisms, including human beings.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Plastics , Microplastics , Latin America , Mexico , Environmental Monitoring , Water Pollutants, Chemical/analysis , Groundwater/chemistry
4.
Chemosphere ; 297: 134194, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35248598

ABSTRACT

The omnipresence of microplastics (MPs) in marine and coastal environments has attracted attention owing to their effects on various organisms, including humans. We present the first study of MPs in the gastrointestinal tract (GT), gills (GI), and exoskeleton (EX) of the farmed whiteleg shrimp Litopenaeus vannamei from commercial aquaculture facilities in northwestern Mexico that have operated semi-intensively for the last two decades. We found that the number of MP items per tissue was 7.6 ± 0.6 in the GT, 6.3 ± 0.9 in the GI, and 4.3 ± 0.9 in the EX, with an average of 18.5 ± 1.2 MP items per shrimp (1.06 items/g, wet weight [ww]). MP concentrations were 261.7 ± 84.5, 13.1 ± 1.8, and 2.6 ± 0.6 items/g (ww) in the GT, GI, and EX, respectively. Microplastics ranged from 30 to 2800 µm in size (360 ± 39 µm) with fibers (∼90.8%), filament-shape (∼93.4%), and transparent (∼47.7%) being the most common ones. Polyethylene (∼54.5%) and polyamide (∼24.2%) were the most commonly identified polymers, although polyesters (∼12.1%), polystyrene (∼6.1%), and nylon (∼3.0%) were also found. The abundance of MPs in farmed L. vannamei may be related to their feeding habits and the availability of MP sources in aquaculture facilities.


Subject(s)
Penaeidae , Water Pollutants, Chemical , Animals , Aquaculture , Environmental Monitoring , Humans , Microplastics , Plastics , Ponds , Water Pollutants, Chemical/analysis
5.
Int J Environ Health Res ; 31(8): 915-931, 2021 Dec.
Article in English | MEDLINE | ID: mdl-31868528

ABSTRACT

Agricultural soils were collected from Mocorito river basin, to determine potentially toxic elements (PTEs) subtotal concentrations and geochemical fractionation, and evaluate their environmental and health risks. All sites showed low As and Cr concentrations. Subtotal concentrations (mg/kg) ranged between 6.8 and 25.6 for As, 1.9 and 2.5 for Cd and 22.5 and 55.1 for Cr. These values were classified as moderately contaminated for As, while a considerable contamination was presented for Cd and Cr. Geochemical partitioning revealed that PTEs are strongly linked with residual phase. Arsenic was associated with amorphous Fe-oxyhydroxides. Ecotoxicological indices showed from low (As and Cr) to considerable (Cd) potential ecological risk factors; potential non-carcinogenic risks by As, Cd and Cr, and potential carcinogenic risks by As and Cr. Lithogenic and anthropogenic sources were identified. Arsenic and Cr showed lithogenic influence, while Cd increased, caused by nearby activities, representing an environmental and health risk.


Subject(s)
Agriculture , Environmental Pollution/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Biological Availability , Ecotoxicology , Environmental Monitoring , Humans , Metalloids/analysis , Metalloids/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Mexico , Risk Assessment , Soil/chemistry
6.
Sci Total Environ ; 761: 143249, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33183810

ABSTRACT

This study reports the largest inorganic elements database in the blood of live marine turtles (Lepidochelys olivacea), with 241 live as well as 38 dead nesting turtles sampled and analyzed for 26 inorganic elements, including essential (Al, As, B, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Se, S, V, and Zn) and non-essential elements (Cd, Li, Pb, Sr, Ti, Tl, and Hg). We compared inorganic element concentrations in live and dead olive ridleys from the arribada beach "La Escobilla" located on the Pacific coast of southeastern Mexico. The most outstanding result of our study is the higher Cd concentration in dead (mean 4.27 µg g-1 ww: min 0.01-max 81.5) compared with live animals (mean 0.14 µg g-1 ww: min 0.02-max 0.52). This population has been previously reported to have the highest Cd concentration worldwide in kidney and liver samples from marine turtles (with 150.88 ±â€¯110.99 and 82.88 ±â€¯36.65 µg g-1 ww, respectively). Other important findings of this study include the low Hg concentration along with the decrease in Pb over the years in this population. The study also uses a new statistical method - the iconography of correlations - in which all available information is used without removing individuals or variables with missing information for the whole analysis, which is a common problem in ecotoxicology. A major advantage of this method compared to other multivariate methods is that the missing information can be easily handled, because the correlations (2 variables) and partial correlations (3 variables) are estimated only with the available data using a one-at-a-time strategy.


Subject(s)
Mercury , Turtles , Animals , Ecotoxicology , Environmental Monitoring , Mexico
7.
J Hazard Mater ; 396: 122739, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32388184

ABSTRACT

The adsorption and desorption of Hg onto and from microplastics (MP) and microalgae (MA) were investigated, and fitted using pseudo-first-order and pseudo-second order kinetics models. Then, the potential role of MP as vector for the entrance and accumulation of Hg (MP-Hg) in comparison to natural pathways (via MA -MA-Hg-, and dissolved -WB-Hg-) was investigated in mussel. Mussels were exposed to a single dose of Hg (2375 ng ind-1) for 4 h. Although the clearance of MP-Hg was relevant (82 %), it was lower than that of MA (95 %) and MA-Hg (94 %). The amount of the Hg accumulated and eliminated was higher in mussels exposed to MP-Hg (1417 ng Hg) than in those exposed to MA-Hg (882 ng Hg) and WB-Hg (1074 ng Hg). However, Hg accumulation was similar in the three mussel groups (≈800 ng Hg). This was related to the fast elimination of Hg still attached to MP by MP-Hg mussels. Hg was mainly accumulated in digestive gland in MA-Hg and MP-Hg mussels, and in gills in WB-Hg mussels. Overall, the results indicated that MP facilitated the entrance of Hg in mussel but also promoted Hg elimination, which could limit the toxicological risk of Hg adsorbed onto MP.


Subject(s)
Mercury , Mytilus , Water Pollutants, Chemical , Animals , Mercury/toxicity , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Sci Total Environ ; 674: 412-423, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31005843

ABSTRACT

In the marine environment, metals can be present dissolved or adsorbed to suspended particles. In the last decades a new type of particle has been introduced, microplastics (MPs). The exposure route of pollutants influences their accumulation and distribution into tissues. A pulse-chase experiment was conducted in which mussels were exposed to Hg: adsorbed onto MPs and microalgae (MA) and dissolved (WB). Mussels accumulated the same amount of Hg independently of particle, due to the Hg loading in both particles and their acceptability were similar. The highest Hg accumulation occurred in gill when the Hg exposure was through water and in digestive gland when Hg was adsorbed to particles. More than 70% of the Hg uptake through MPs was quickly eliminated due to: i) part of the cleared MPs might not really be ingested but adhered to body surfaces of mussels, ii) MPs ingested were eliminated through faeces as they are non-nutritive particles which may be rejected in stomach preventing their entry into digestive gland and iii) high affinity of Hg on surface of MPs which meant that Hg was mainly eliminated jointly to MPs. The organic nature of MA facilitates the entry of Hg into digestive gland where MA are intracellularly digested releasing the Hg adsorbed onto their surfaces. In this case, Hg may reach deeper levels by translocation of the Hg incorporated into gland towards foot and remaining tissues, a process that might occur through haemolymph. All of the Hg accumulated in WB during the exposure was internally absorbed into tissues, and later translocated from gill to gland. Although Hg elimination rate in MPs mussels was greater than in the other exposure pathways, an important amount of Hg was maintained through the depuration period, thus we cannot and should not neglect the risk of MPs as vectors for mercury.


Subject(s)
Mercury/metabolism , Mytilus/metabolism , Plastics/metabolism , Water Pollutants, Chemical/metabolism , Animals
9.
Arch Environ Contam Toxicol ; 70(2): 348-60, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26743199

ABSTRACT

Thirty-three sediment samples were collected from the Santa Maria La Reforma coastal lagoon and digested by way of a strong acid mixture and sequential arsenic (As)-extraction method to determine the arsenic (As) content and bioavailability. The As content was determined by atomic fluorescence spectrometry. In addition, grain-size analyses were performed, and organic carbon, carbonate, and iron (Fe) and manganese (Mn) concentrations were determined. Fe and Mn determination was performed by atomic absorption spectroscopy. A Pearson correlation matrix and As enrichment factors were calculated. Sediment concentrations from Santa Maria La Reforma ranged from 3.6 to 25 µg As g(-1) with an average of 13.4 ± 7.6 µg As g(-1). The highest values were observed in the northern (Playa Colorada), north-central (Mocorito River discharge zone), and southern zones ("El Tule" agricultural drain). Most samples were classified as exhibiting no or minor As enrichment and were lower than the threshold effect level (TEL; 7.24 µg g(-1)) for biota (MacDonald et al. in Ecotoxicology 5:253-278, 1996). Low bioavailable As values (<3 %) were measured in the majority of the sediment. The highest As percentages were associated with the oxyhydroxide fraction (F5). The results indicate that As bioavailability is negligible.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Carbonates/analysis , Geologic Sediments/chemistry , Iron , Manganese/analysis , Mexico
10.
Bull Environ Contam Toxicol ; 92(5): 596-601, 2014 May.
Article in English | MEDLINE | ID: mdl-24549918

ABSTRACT

The geosorption of As(III) on red clays from aqueous solution under different environmental conditions (i.e. initial concentration, pH and temperature) was studied. This process reached its equilibrium quickly (<120 min). A decrease of the percentage of adsorption was caused when the initial concentration was increased (0.1-10 mg As(III) L(-1)), in all the experimental pH levels (4-10). The optimal pH value for adsorption on red clays at 0.1 mg As(III) L(-1) was 10, while for 10 mg As(III) L(-1) was 4. There wasn't a significant effect of temperature on the As(III) adsorption. The kinetic pseudo-second order and the isothermal Langmuir were the models that best described the experimental data, suggesting an adsorption process in multistep. Likewise, there are not interactions between neighbor active sites on the red clay surface.


Subject(s)
Aluminum Silicates/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Adsorption , Arsenic/analysis , Clay , Hydrogen-Ion Concentration , Kinetics , Soil Pollutants/analysis , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...