Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37016577

ABSTRACT

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Endoplasmic Reticulum Stress/genetics , Mice, Transgenic , Proteomics , Proteostasis/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Unfolded Protein Response/genetics
2.
Rev Med Chil ; 148(2): 216-223, 2020 Feb.
Article in Spanish | MEDLINE | ID: mdl-32730499

ABSTRACT

The clinical features of Alzheimer's disease (AD), for example the progressive memory loss, are produced by neuronal loss and synaptic dysfunction. These events have been associated with histopathological alterations in AD brain, including the presence of amyloid plaques and neurofibrillary tangles. Recent studies suggest that cellular stress produced by the aggregation of misfolded proteins leads to alterations in protein homeostasis, that is regulated for the most part by endoplasmic reticulum (ER). The ER is the main compartment involved in the folding and secretion of proteins and is drastically affected in AD neurons. Recent evidence implicates the participation of adaptive responses to stress within the ER in the disease process through a signaling pathway known as the Unfolded Protein Response (UPR) which alleviates the protein aggregation and ER stress. Based on the involvement of ER stress in several diseases, efforts are being done to identify small molecules that can inhibit or activate selective UPR components. Here, we review the findings suggesting a functional role of ER stress in the etiology of AD. Possible therapeutic strategies to mitigate ER stress in the context of AD are discussed.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Humans , Signal Transduction , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL
...