Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(29): e2322864121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976727

ABSTRACT

Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.


Subject(s)
Cell Differentiation , Neurons , Animals , Neurons/metabolism , Neurons/cytology , Regeneration/physiology , Regeneration/genetics , Brain/metabolism , Brain/cytology
2.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214981

ABSTRACT

Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights: A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.

3.
Nat Commun ; 14(1): 2612, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147314

ABSTRACT

Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.


Subject(s)
Adult Stem Cells , Planarians , Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Transcription Factors/metabolism , Histones/genetics , Histones/metabolism , Adult Stem Cells/metabolism , Planarians/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...