Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(37): E3853-9, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25187555

ABSTRACT

The ClpS adaptor collaborates with the AAA+ ClpAP protease to recognize and degrade N-degron substrates. ClpS binds the substrate N-degron and assembles into a high-affinity ClpS-substrate-ClpA complex, but how the N-degron is transferred from ClpS to the axial pore of the AAA+ ClpA unfoldase to initiate degradation is not known. Here we demonstrate that the unstructured N-terminal extension (NTE) of ClpS enters the ClpA processing pore in the active ternary complex. We establish that ClpS promotes delivery only in cis, as demonstrated by mixing ClpS variants with distinct substrate specificity and either active or inactive NTE truncations. Importantly, we find that ClpA engagement of the ClpS NTE is crucial for ClpS-mediated substrate delivery by using ClpS variants carrying "blocking" elements that prevent the NTE from entering the pore. These results support models in which enzymatic activity of ClpA actively remodels ClpS to promote substrate transfer, and highlight how ATPase/motor activities of AAA+ proteases can be critical for substrate selection as well as protein degradation.


Subject(s)
Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Proteolysis , Carrier Proteins/chemistry , Endopeptidase Clp/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Models, Molecular , Mutant Proteins/metabolism , Substrate Specificity
2.
Biophys J ; 104(1): 106-16, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23332063

ABSTRACT

Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes.


Subject(s)
Lipid Bilayers/chemistry , Lipids/chemistry , Spin Labels , Static Electricity , Dimyristoylphosphatidylcholine/chemistry , Electrolytes/chemistry , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Molecular Probes/chemistry , Nitrogen Oxides/chemistry , Phosphatidylglycerols/chemistry , Surface Properties , Unilamellar Liposomes/chemistry
3.
J Pharm Pharmacol ; 63(6): 800-5, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21585378

ABSTRACT

OBJECTIVES: Addition of the antimicrobial preservative benzyl alcohol to reconstitution buffer promotes the formation of undesirable aggregates in multidose protein formulations. Herein we investigated the efficiency of PEGylation (attachment of poly(ethylene glycol)) to prevent benzyl alcohol-induced aggregation of the model protein α-chymotrypsinogen A (aCTgn). METHODS: Various PEG-aCTgn conjugates were prepared using PEG with a molecular weight of either 700 or 5000 Da by varying the PEG-to-protein ratio during synthesis and the formation of insoluble aggregates was studied. The effect of benzyl alcohol on the thermodynamic stability and tertiary structure of aCTgn was also examined. KEY FINDINGS: When the model protein was reconstituted in buffer containing 0.9% benzyl alcohol, copious amounts of buffer-insoluble aggregates formed within 24 h (>10%). Benzyl alcohol-induced aggregation was completely prevented when two or five molecules of PEG with a molecular weight of 5000 Da were attached to the protein, whereas two or four molecules of bound 700 Da PEG were completely inefficient in preventing aggregation. Mechanistic investigations excluded prevention of structural perturbations or increased thermodynamic stability by PEGylation from being responsible for the prevention of aggregation. Simple addition of PEG to the buffer was also inefficient and PEG had to be covalently linked to the protein to be efficient. CONCLUSIONS: The most likely explanation for the protective effect of the 5000 Da PEG is shielding of exposed hydrophobic protein surface area and prevention of protein-protein contacts (molecular spacer effect).


Subject(s)
Benzyl Alcohol/chemistry , Chymotrypsinogen/administration & dosage , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Buffers , Chemistry, Pharmaceutical , Chymotrypsinogen/chemistry , Molecular Weight
4.
Mol Microbiol ; 75(6): 1539-49, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20158612

ABSTRACT

Small heat-shock proteins (sHSPs) are a widely conserved family of molecular chaperones, all containing a conserved alpha-crystallin domain flanked by variable N- and C-terminal tails. We report that IbpA and IbpB, the sHSPs of Escherichia coli, are substrates for the AAA+ Lon protease. This ATP-fueled enzyme degraded purified IbpA substantially more slowly than purified IbpB, and we demonstrate that this disparity is a consequence of differences in maximal Lon degradation rates and not in substrate affinity. Interestingly, however, IbpB stimulated Lon degradation of IbpA both in vitro and in vivo. Furthermore, although the variable N- and C-terminal tails of the Ibps were dispensable for proteolytic recognition, these tails contain critical determinants that control the maximal rate of Lon degradation. Finally, we show that E. coli Lon degrades variants of human alpha-crystallin, indicating that Lon recognizes conserved determinants in the folded alpha-crystallin domain itself. These results suggest a novel mode for Lon substrate recognition and provide a highly suggestive link between the degradation and sHSP branches of the protein quality-control network.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Gene Expression Regulation, Bacterial , Heat-Shock Proteins, Small/metabolism , Heat-Shock Proteins/metabolism , Metalloendopeptidases/metabolism , Protease La/metabolism , Escherichia coli/metabolism , Humans , alpha-Crystallins/metabolism
5.
Biotechnol Lett ; 31(6): 883-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19224136

ABSTRACT

Alpha-chymotrypsin was chemically modified with methoxypoly(ethylene glycol) (PEG) of different molecular weights (700, 2,000, and 5,000 Da) and the amount of polymer attached to the enzyme was varied systematically from 1 to 9 PEG molecules per enzyme molecule. Upon PEG conjugation, enzyme catalytic turnover (k (cat)) decreased by 50% and substrate affinity was lowered as evidenced by an increase in the K (M) from 0.05 to 0.19 mM. These effects were dependent on the amount of PEG bound to the enzyme but were independent of the PEG size. In contrast, stabilization toward thermal inactivation depended on the PEG molecular weight with conjugates with the larger PEGs being more stable.


Subject(s)
Chymotrypsin/chemistry , Chymotrypsin/metabolism , Polyethylene Glycols/chemistry , Animals , Cattle , Enzyme Stability , Kinetics , Molecular Weight , Temperature
6.
Biotechnol Bioeng ; 101(6): 1142-9, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18781698

ABSTRACT

Protein stability remains one of the main factors limiting the realization of the full potential of protein therapeutics. Poly(ethylene glycol) (PEG) conjugation to proteins has evolved into an important tool to overcome instability issues associated with proteins. The observed increase in thermodynamic stability of several proteins upon PEGylation has been hypothesized to arise from reduced protein structural dynamics, although experimental evidence for this hypothesis is currently missing. To test this hypothesis, the model protein alpha-chymotrypsin (alpha-CT) was covalently modified with PEGs with molecular weights (M(W)) of 700, 2,000 and 5,000 and the degree of modification was systematically varied. The procedure did not cause significant tertiary structure changes. Thermodynamic unfolding experiments revealed that PEGylation increased the thermal transition temperature (T(m)) of alpha-CT by up to 6 degrees C and the free energy of unfolding [DeltaG(U) (25 degrees C)] by up to 5 kcal/mol. The increase in stability was found to be independent of the PEG M(W) and it leveled off after an average of four PEG molecules were bound to alpha-CT. Fourier-transformed infrared (FTIR) H/D exchange experiments were conducted to characterize the conformational dynamics of the PEG-conjugates. It was found that the magnitude of thermodynamic stabilization correlates with a reduction in protein structural dynamics and was independent of the PEG M(W). Thus, the initial hypothesis proved positive. Similar to the thermodynamic stabilization of proteins by covalent modification with glycans, PEG thermodynamically stabilizes alpha-CT by reducing protein structural dynamics. These results provide guidance for the future development of stable protein formulations.


Subject(s)
Chymotrypsin/chemistry , Chymotrypsin/metabolism , Circular Dichroism , Enzyme Stability , Fourier Analysis , Polyethylene Glycols/metabolism , Protein Structure, Tertiary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...