Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(1): e0261856, 2022.
Article in English | MEDLINE | ID: mdl-35051195

ABSTRACT

Containers have emerged as a more portable and efficient solution than virtual machines for cloud infrastructure providing both a flexible way to build and deploy applications. The quality of service, security, performance, energy consumption, among others, are essential aspects of their deployment, management, and orchestration. Inappropriate resource allocation can lead to resource contention, entailing reduced performance, poor energy efficiency, and other potentially damaging effects. In this paper, we present a set of online job allocation strategies to optimize quality of service, energy savings, and completion time, considering contention for shared on-chip resources. We consider the job allocation as the multilevel dynamic bin-packing problem that provides a lightweight runtime solution that minimizes contention and energy consumption while maximizing utilization. The proposed strategies are based on two and three levels of scheduling policies with container selection, capacity distribution, and contention-aware allocation. The energy model considers joint execution of applications of different types on shared resources generalized by the job concentration paradigm. We provide an experimental analysis of eighty-six scheduling heuristics with scientific workloads of memory and CPU-intensive jobs. The proposed techniques outperform classical solutions in terms of quality of service, energy savings, and completion time by 21.73-43.44%, 44.06-92.11%, and 16.38-24.17%, respectively, leading to a cost-efficient resource allocation for cloud infrastructures.


Subject(s)
Algorithms , Cloud Computing
2.
PLoS One ; 16(8): e0255886, 2021.
Article in English | MEDLINE | ID: mdl-34388187

ABSTRACT

BACKGROUND: The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, especially in underdeveloped countries. There is a clear need to develop novel computer-assisted diagnosis tools to provide rapid and cost-effective screening in places where massive traditional testing is not feasible. Lung ultrasound is a portable, easy to disinfect, low cost and non-invasive tool that can be used to identify lung diseases. Computer-assisted analysis of lung ultrasound imagery is a relatively recent approach that has shown great potential for diagnosing pulmonary conditions, being a viable alternative for screening and diagnosing COVID-19. OBJECTIVE: To evaluate and compare the performance of deep-learning techniques for detecting COVID-19 infections from lung ultrasound imagery. METHODS: We adapted different pre-trained deep learning architectures, including VGG19, InceptionV3, Xception, and ResNet50. We used the publicly available POCUS dataset comprising 3326 lung ultrasound frames of healthy, COVID-19, and pneumonia patients for training and fine-tuning. We conducted two experiments considering three classes (COVID-19, pneumonia, and healthy) and two classes (COVID-19 versus pneumonia and COVID-19 versus non-COVID-19) of predictive models. The obtained results were also compared with the POCOVID-net model. For performance evaluation, we calculated per-class classification metrics (Precision, Recall, and F1-score) and overall metrics (Accuracy, Balanced Accuracy, and Area Under the Receiver Operating Characteristic Curve). Lastly, we performed a statistical analysis of performance results using ANOVA and Friedman tests followed by post-hoc analysis using the Wilcoxon signed-rank test with the Holm's step-down correction. RESULTS: InceptionV3 network achieved the best average accuracy (89.1%), balanced accuracy (89.3%), and area under the receiver operating curve (97.1%) for COVID-19 detection from bacterial pneumonia and healthy lung ultrasound data. The ANOVA and Friedman tests found statistically significant performance differences between models for accuracy, balanced accuracy and area under the receiver operating curve. Post-hoc analysis showed statistically significant differences between the performance obtained with the InceptionV3-based model and POCOVID-net, VGG19-, and ResNet50-based models. No statistically significant differences were found in the performance obtained with InceptionV3- and Xception-based models. CONCLUSIONS: Deep learning techniques for computer-assisted analysis of lung ultrasound imagery provide a promising avenue for COVID-19 screening and diagnosis. Particularly, we found that the InceptionV3 network provides the most promising predictive results from all AI-based techniques evaluated in this work. InceptionV3- and Xception-based models can be used to further develop a viable computer-assisted screening tool for COVID-19 based on ultrasound imagery.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Ultrasonography/methods , Humans
3.
Sensors (Basel) ; 12(11): 14262-91, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23202159

ABSTRACT

Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.

SELECTION OF CITATIONS
SEARCH DETAIL
...