Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 129(7): 2878-2887, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31038472

ABSTRACT

The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole exome sequencing of DNA from probands of 24 rHS or HPP kindreds identified numerous mutations in erythrocyte membrane α-spectrin (SPTA1). Twenty-eight mutations were novel, with null alleles frequently found in trans to missense mutations. No mutations were identified in a third of SPTA1 alleles (17/48). Whole genome sequencing revealed linkage disequilibrium between the common rHS-linked α-spectrinBug Hill polymorphism and a rare intron 30 variant in all 17 mutation-negative alleles. In vitro minigene studies and in vivo splicing analyses revealed the intron 30 variant changes a weak alternate branch point (BP) to a strong BP. This change leads to increased utilization of an alternate 3' splice acceptor site, perturbing normal α-spectrin mRNA splicing and creating an elongated mRNA transcript. In vivo mRNA stability studies revealed the newly created termination codon in the elongated transcript activates nonsense mediated decay leading to spectrin deficiency. These results demonstrate a unique mechanism of human genetic disease contributes to the etiology of a third of cases of rHS, facilitating diagnosis and treatment of severe anemia, and identifying a new target for therapeutic manipulation.


Subject(s)
Anemia, Hemolytic, Congenital , Erythrocyte Membrane , Mutation, Missense , RNA Splice Sites , RNA Splicing/genetics , Spectrin , Anemia, Hemolytic, Congenital/genetics , Anemia, Hemolytic, Congenital/metabolism , Anemia, Hemolytic, Congenital/pathology , Erythrocyte Membrane/genetics , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Female , Humans , Male , Spectrin/biosynthesis , Spectrin/genetics
2.
Structure ; 25(1): 132-145, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27989623

ABSTRACT

Anion exchanger 1 (AE1) is a critical transporter and the primary structural scaffold for large macromolecular complexes responsible for erythrocyte membrane flexibility and integrity. We used zero-length crosslinking and mass spectrometry to probe AE1 structures and interactions in intact erythrocyte membranes. An experimentally verified full-length model of AE1 dimers was developed by combining crosslink-defined distance constraints with homology modeling. Previously unresolved cytoplasmic loops in the AE1 C-terminal domain are packed at the domain-domain interface on the cytoplasmic face of the membrane where they anchor the N-terminal domain's location and prevent it from occluding the ion channel. Crosslinks between AE1 dimers and ankyrin-1 indicate the likely topology for AE1 tetramers and suggest that ankyrin-1 wraps around AE1 tetramers, which may stabilize this oligomer state. This interaction and interactions of AE1 with other major erythrocyte membrane proteins show that protein-protein contacts are often substantially more extensive than previously reported.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/chemistry , Anion Exchange Protein 1, Erythrocyte/metabolism , Ankyrins/metabolism , Erythrocyte Membrane/metabolism , Anion Exchange Protein 1, Erythrocyte/genetics , Cross-Linking Reagents , Humans , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization , Structural Homology, Protein
3.
Methods ; 89: 99-111, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25937394

ABSTRACT

Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed.


Subject(s)
Cross-Linking Reagents/chemistry , Macromolecular Substances/analysis , Macromolecular Substances/chemistry , Protein Conformation , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Humans
4.
Biochem J ; 468(1): 87-98, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25748205

ABSTRACT

Peroxiredoxin-6 (PRDX6) is an unusual member of the peroxiredoxin family of antioxidant enzymes that has only one evolutionarily conserved cysteine. It reduces oxidized lipids and reactive oxygen species (ROS) by oxidation of the active-site cysteine (Cys(47)) to a sulfenic acid, but the mechanism for conversion back to a thiol is not completely understood. Moreover, it has phospholipase A2 (PLA2) activity in addition to its peroxidase activity. Interestingly, some biochemical data are inconsistent with a known high-resolution crystal structure of the catalytic intermediate of the protein, and biophysical data indicate that the protein undergoes conformational changes that affect enzyme activity. In order to further elucidate the solution structure of this important enzyme, we used chemical cross-linking coupled with high-resolution MS (CX-MS), with an emphasis on zero-length cross-links. Distance constraints from high confidence cross-links were used in homology modelling experiments to determine a solution structure of the reduced form of the protein. This structure was further evaluated using chemical cross-links produced by several homo-bifunctional amine-reactive cross-linking reagents, which helped to confirm the solution structure. The results show that several regions of the reduced version of human PRDX6 are in a substantially different conformation from that shown for the crystal structure of the peroxidase catalytic intermediate. The differences between these two structures are likely to reflect catalysis-related conformational changes. These studies also demonstrate that CX-MS using zero-length cross-linking is a powerful strategy for probing protein conformational changes that is complementary to alternative methods such as crystallographic, NMR and biophysical studies.


Subject(s)
Peroxiredoxin VI/chemistry , Amino Acid Sequence , Cross-Linking Reagents , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Peroxiredoxin VI/genetics , Protein Conformation , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structural Homology, Protein , Tandem Mass Spectrometry
5.
J Biol Chem ; 287(5): 3165-74, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22119916

ABSTRACT

A large number of tropomyosin (Tm) isoforms function as gatekeepers of the actin filament, controlling the spatiotemporal access of actin-binding proteins to specialized actin networks. Residues ∼40-80 vary significantly among Tm isoforms, but the impact of sequence variation on Tm structure and interactions with actin is poorly understood, because structural studies have focused on skeletal muscle Tmα. We describe structures of N-terminal fragments of smooth muscle Tmα and Tmß (sm-Tmα and sm-Tmß). The 2.0-Å structure of sm-Tmα81 (81-aa) resembles that of skeletal Tmα, displaying a similar super-helical twist matching the contours of the actin filament. The 1.8-Å structure of sm-Tmα98 (98-aa) unexpectedly reveals an antiparallel coiled coil, with the two chains staggered by only 4 amino acids and displaying hydrophobic core interactions similar to those of the parallel dimer. In contrast, the 2.5-Å structure of sm-Tmß98, containing Gly-Ala-Ser at the N terminus to mimic acetylation, reveals a parallel coiled coil. None of the structures contains coiled-coil stabilizing elements, favoring the formation of head-to-tail overlap complexes in four of five crystallographically independent parallel dimers. These complexes show similarly arranged 4-helix bundles stabilized by hydrophobic interactions, but the extent of the overlap varies between sm-Tmß98 and sm-Tmα81 from 2 to 3 helical turns. The formation of overlap complexes thus appears to be an intrinsic property of the Tm coiled coil, with the specific nature of hydrophobic contacts determining the extent of the overlap. Overall, the results suggest that sequence variation among Tm isoforms has a limited effect on actin binding but could determine its gatekeeper function.


Subject(s)
Muscle, Smooth/chemistry , Protein Multimerization , Tropomyosin/chemistry , Animals , Chickens , Crystallography, X-Ray , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Tropomyosin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...