Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980946

ABSTRACT

Adipose-derived stem cells (ADSCs) are used in tissue regeneration therapies. The objective of this study is to identify stable reference genes (RGs) for use in gene expression studies in a characterized equine adipose-derived mesenchymal stem cell (EADMSC) differentiation model. ADSCs were differentiated into adipocytes (ADs) or osteoblasts (OBs), and the proteomes from these cells were analyzed by liquid chromatography tandem mass spectrometry. Proteins that were stably expressed in all three cells types were identified, and the mRNA expression stabilities for their corresponding genes were validated by RT-qPCR. PPP6R1, CCDC97, and then either ACTB or EPHA2 demonstrated the most stable mRNA levels. Normalizing target gene Cq data with at least three of these RGs simultaneously, as per MIQE guidelines (PPP6R1 and CCDC97 with either ACTB or EPHA2), resulted in congruent conclusions. FABP5 expression was increased in ADs (5.99 and 8.00 fold, p = 0.00002 and p = 0.0003) and in OBs (5.18 and 5.91 fold, p = 0.0011 and p = 0.0023) relative to ADSCs. RUNX2 expression was slightly higher in ADs relative to ADSCs (1.97 and 2.65 fold, p = 0.04 and p = 0.01), but not in OBs (0.9 and 1.03 fold, p = 0.58 and p = 0.91).


Subject(s)
Mesenchymal Stem Cells , Proteome , Animals , Horses/genetics , Proteome/genetics , Proteome/metabolism , RNA-Directed DNA Polymerase/metabolism , Real-Time Polymerase Chain Reaction , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Gene Expression , RNA, Messenger/metabolism , DNA-Directed RNA Polymerases/metabolism
2.
J Bacteriol ; 193(17): 4346-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742865

ABSTRACT

The Gram-negative intracellular pathogen Legionella pneumophila replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophila expressing a translocation reporter consisting of the Bordetella pertussisa denylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2 induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophila may require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophila replication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophila proliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila.


Subject(s)
Bacterial Proteins/metabolism , Chaperonins/metabolism , Legionella pneumophila/growth & development , Polyamines/metabolism , Adenosylmethionine Decarboxylase/metabolism , Animals , Bacterial Proteins/genetics , CHO Cells , Cell Proliferation , Cell Survival , Chaperonins/genetics , Computational Biology , Cricetinae , Cricetulus , Culture Media , Cytoplasm/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Humans , Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Mice , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Two-Hybrid System Techniques , U937 Cells , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...