Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biomol NMR Assign ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904726

ABSTRACT

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.

2.
Res Sq ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38883784

ABSTRACT

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain. Database: BMRB submission code: 52440.

3.
Proc Natl Acad Sci U S A ; 120(50): e2308858120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048471

ABSTRACT

Gene silencing is intimately connected to DNA condensation and the formation of transcriptionally inactive heterochromatin by Heterochromatin Protein 1α (HP1α). Because heterochromatin foci are dynamic and HP1α can promote liquid-liquid phase separation, HP1α-mediated phase separation has been proposed as a mechanism of chromatin compaction. The molecular basis of HP1α-driven phase separation and chromatin compaction and the associated regulation by trimethylation of lysine 9 in histone 3 (H3K9me3), which is the hallmark of constitutive heterochromatin, is however largely unknown. Using a combination of chromatin compaction and phase separation assays, site-directed mutagenesis, and NMR-based interaction analysis, we show that human HP1α can compact chromatin in the absence of liquid-liquid phase separation. We further demonstrate that H3K9-trimethylation promotes compaction of chromatin arrays through multimodal interactions. The results provide molecular insights into HP1α-mediated chromatin compaction and thus into the role of human HP1α in the regulation of gene silencing.


Subject(s)
Chromatin , Heterochromatin , Humans , Chromatin/genetics , Heterochromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Histones/genetics , Histones/metabolism , Transcription Factors/metabolism
4.
Biomol NMR Assign ; 17(2): 293-299, 2023 12.
Article in English | MEDLINE | ID: mdl-37864759

ABSTRACT

Adhesin P1 (aka AgI/II) plays a pivotal role in mediating Streptococcus mutans attachment in the oral cavity, as well as in regulating biofilm development and maturation. P1's naturally occurring truncation product, Antigen II (AgII), adopts both soluble, monomeric and insoluble, amyloidogenic forms within the bacterial life cycle. Monomers are involved in important quaternary interactions that promote cell adhesion and the functional amyloid form promotes detachment of mature biofilms. The heterologous, 51-kD C123 construct comprises most of AgII and was previously characterized by X-ray crystallography. C123 contains three structurally homologous domains, C1, C2, and C3. NMR samples made using the original C123 construct, or its C3 domain, yielded moderately resolved NMR spectra. Using Alphafold, we re-analyzed the P1 sequence to better identify domain boundaries for C123, and in particular the C3 domain. We then generated a more tractable construct for NMR studies of the monomeric form, including quaternary interactions with other proteins. The addition of seven amino acids at the C-terminus greatly improved the spectral dispersion for C3 relative to the prior construct. Here we report the backbone NMR resonance assignments for the new construct and characterize some of its quaternary interactions. These data are in good agreement with the structure predicted by Alphafold, which contains additional ß-sheet secondary structure compared to the C3 domain in the C123 crystal structure for a construct lacking the seven C-terminal amino acids. Its quaternary interactions with known protein partners are in good agreement with prior competitive binding assays. This construct can be used for further NMR studies, including protein-protein interaction studies and assessing the impact of environmental conditions on C3 structure and dynamics within C123 as it transitions from monomer to amyloid form.


Subject(s)
Adhesins, Bacterial , Streptococcus mutans , Streptococcus mutans/chemistry , Streptococcus mutans/metabolism , Nuclear Magnetic Resonance, Biomolecular , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Protein Structure, Secondary , Amyloid/chemistry , Amino Acids
5.
Nat Commun ; 14(1): 5919, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739953

ABSTRACT

Pathogenic aggregation of the protein tau is a hallmark of Alzheimer's disease and several other tauopathies. Tauopathies are characterized by the deposition of specific tau isoforms as disease-related tau filament structures. The molecular processes that determine isoform-specific deposition of tau are however enigmatic. Here we show that acetylation of tau discriminates its isoform-specific aggregation. We reveal that acetylation strongly attenuates aggregation of four-repeat tau protein, but promotes amyloid formation of three-repeat tau. We further identify acetylation of lysine 298 as a hot spot for isoform-specific tau aggregation. Solid-state NMR spectroscopy demonstrates that amyloid fibrils formed by unmodified and acetylated three-repeat tau differ in structure indicating that site-specific acetylation modulates tau structure. The results implicate acetylation as a critical regulator that guides the selective aggregation of three-repeat tau and the development of tau isoform-specific neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , 14-3-3 Proteins , Acetylation , tau Proteins
6.
Sci Adv ; 8(17): eabn0044, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35486726

ABSTRACT

The alpha-synuclein mutation E83Q, the first in the NAC domain of the protein, was recently identified in a patient with dementia with Lewy bodies. We investigated the effects of this mutation on the aggregation of aSyn monomers and the structure, morphology, dynamic, and seeding activity of the aSyn fibrils in neurons. We found that it markedly accelerates aSyn fibrillization and results in the formation of fibrils with distinct structural and dynamic properties. In cells, this mutation is associated with higher levels of aSyn, accumulation of pS129, and increased toxicity. In a neuronal seeding model of Lewy body (LB) formation, the E83Q mutation significantly enhances the internalization of fibrils into neurons, induces higher seeding activity, and results in the formation of diverse aSyn pathologies, including the formation of LB-like inclusions that recapitulate the immunohistochemical and morphological features of brainstem LBs observed in brains of patients with Parkinson's disease.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Lewy Bodies/chemistry , Lewy Bodies/metabolism , Lewy Bodies/pathology , Mutation , Parkinson Disease/metabolism , Virulence , alpha-Synuclein/genetics
7.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34996869

ABSTRACT

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Subject(s)
Alanine/analogs & derivatives , Catalytic Domain , Crystallography, X-Ray/methods , Magnetic Resonance Spectroscopy/methods , Tryptophan Synthase/chemistry , Catalysis , Indoles , Magnetic Resonance Imaging , Nuclear Magnetic Resonance, Biomolecular , Pyridoxal Phosphate/metabolism , Tryptophan Synthase/metabolism
8.
Nat Commun ; 12(1): 4231, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244499

ABSTRACT

Pathological aggregation of the protein tau into insoluble aggregates is a hallmark of neurodegenerative diseases. The emergence of disease-specific tau aggregate structures termed tau strains, however, remains elusive. Here we show that full-length tau protein can be aggregated in the absence of co-factors into seeding-competent amyloid fibrils that sequester RNA. Using a combination of solid-state NMR spectroscopy and biochemical experiments we demonstrate that the co-factor-free amyloid fibrils of tau have a rigid core that is similar in size and location to the rigid core of tau fibrils purified from the brain of patients with corticobasal degeneration. In addition, we demonstrate that the N-terminal 30 residues of tau are immobilized during fibril formation, in agreement with the presence of an N-terminal epitope that is specifically detected by antibodies in pathological tau. Experiments in vitro and in biosensor cells further established that co-factor-free tau fibrils efficiently seed tau aggregation, while binding studies with different RNAs show that the co-factor-free tau fibrils strongly sequester RNA. Taken together the study provides a critical advance to reveal the molecular factors that guide aggregation towards disease-specific tau strains.


Subject(s)
Amyloid/metabolism , Protein Aggregation, Pathological/pathology , RNA/metabolism , tau Proteins/metabolism , Amyloid/ultrastructure , Biosensing Techniques , Humans , Nuclear Magnetic Resonance, Biomolecular , RNA/ultrastructure , RNA, Fungal/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , tau Proteins/isolation & purification , tau Proteins/ultrastructure
9.
Eur Biophys J ; 50(2): 173-180, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33354729

ABSTRACT

Translocator Protein (18 kDa) (TSPO) is a mitochondrial transmembrane protein commonly used as a biomarker for neuroinflammation and is also a potential therapeutic target in neurodegenerative diseases. Despite intensive research efforts, the function of TSPO is still largely enigmatic. Deciphering TSPO structure in the native lipid environment is essential to gain insight into its cellular activities and to design improved diagnostic and therapeutic ligands. Here, we discuss the influence of lipid composition on the structure of mammalian TSPO embedded into lipid bilayers on the basis of solid-state NMR experiments. We further highlight that cholesterol can influence both the tertiary and quaternary TSPO structure and also influence TSPO localization in mitochondria-associated endoplasmic reticulum membranes.


Subject(s)
Cell Membrane/metabolism , Magnetic Resonance Spectroscopy , Receptors, GABA/chemistry , Receptors, GABA/metabolism
10.
ACS Omega ; 5(18): 10466-10480, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32426604

ABSTRACT

New Delhi metallo-ß-lactamase-1 (NDM-1) has recently emerged as a global threat because of its ability to confer resistance to all common ß-lactam antibiotics. Understanding the molecular basis of ß-lactam hydrolysis by NDM is crucial for designing NDM inhibitors or ß-lactams resistant to their hydrolysis. In this study, for the first time, NMR was used to study the influence of Zn(II) ions on the dynamic behavior of NDM-1. Our results highlighted that the binding of Zn(II) in the NDM-1 active site induced several structural and dynamic changes on active site loop 2 (ASL2) and L9 loops and on helix α2. We subsequently studied the interaction of several flavonols: morin, quercetin, and myricetin were identified as natural and specific inhibitors of NDM-1. Quercetin conjugates were also synthesized in an attempt to increase the solubility and bioavailability. Our NMR investigations on NDM-1/flavonol interactions highlighted that both Zn(II) ions and the residues of the NDM-1 ASL1, ASL2, and ASL4 loops are involved in the binding of flavonols. This is the first NMR interaction study of NDM-1/inhibitors, and the models generated using HADDOCK will be useful for the rational design of more active inhibitors, directed against NDM-1.

11.
FEBS J ; 287(12): 2597-2611, 2020 06.
Article in English | MEDLINE | ID: mdl-31782893

ABSTRACT

Cell surface-localized P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans mediates sucrose-independent adhesion to tooth surfaces. Previous studies showed that P1's C-terminal segment (C123, AgII) is also liberated as a separate polypeptide, contributes to cellular adhesion, interacts specifically with intact P1 on the cell surface, and forms amyloid fibrils. Identifying how C123 specifically interacts with P1 at the atomic level is essential for understanding related virulence properties of S. mutans. However, with sizes of ~ 51 and ~ 185 kDa, respectively, C123 and full-length P1 are too large to achieve high-resolution data for full structural analysis by NMR. Here, we report on biologically relevant interactions of the individual C3 domain with A3VP1, a polypeptide that represents the apical head of P1 as it is projected on the cell surface. Also evaluated are C3's interaction with C12 and the adhesion-inhibiting monoclonal antibody (MAb) 6-8C. NMR titration experiments with 15 N-enriched C3 demonstrate its specific binding to A3VP1. Based on resolved C3 assignments, two binding sites, proximal and distal, are identified. Complementary NMR titration of A3VP1 with a C3/C12 complex suggests that binding of A3VP1 occurs on the distal C3 binding site, while the proximal site is occupied by C12. The MAb 6-8C binding interface to C3 overlaps with that of A3VP1 at the distal site. Together, these results identify a specific C3-A3VP1 interaction that serves as a foundation for understanding the interaction of C123 with P1 on the bacterial surface and the related biological processes that stem from this interaction. DATABASE: BMRB submission code: 27935.


Subject(s)
Adhesins, Bacterial/chemistry , Nuclear Magnetic Resonance, Biomolecular , Streptococcus mutans/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Binding
12.
Solid State Nucl Magn Reson ; 100: 85-91, 2019 08.
Article in English | MEDLINE | ID: mdl-31026722

ABSTRACT

We investigate solid-state dynamic nuclear polarization of 13C and 15N nuclei using monoradical trityl OX063 as a polarizing agent in a magnetic field of 14.1 T with magic angle spinning at ∼100 K. We monitored the field dependence of direct 13C and 15N polarization for frozen [13C, 15N] urea and achieved maximum absolute enhancement factors of 240 and 470, respectively. The field profiles are consistent with polarization of 15N spins via either the solid effect or the cross effect, and polarization of 13C spins via a combination of cross effect and solid effect. For microcrystalline, 15N-enriched tryptophan synthase sample containing trityl radical, a 1500-fold increase in 15N signal was observed under microwave irradiation. These results show the promise of trityl radicals and their derivatives for direct polarization of low gamma, spin-½ nuclei at high magnetic fields and suggest a novel approach for selectively polarizing specific moieties or for polarizing systems which have low levels of protonation.


Subject(s)
Magnetic Resonance Spectroscopy , Trityl Compounds/chemistry , Free Radicals/chemistry , Magnetic Fields , Microwaves , Protons , Urea/chemistry
13.
J Mol Biol ; 428(22): 4544-4558, 2016 11 06.
Article in English | MEDLINE | ID: mdl-27725184

ABSTRACT

AMSH [associated molecule with a Src homology 3 domain of signal transducing adaptor molecule (STAM)] is one of the deubiquitinating enzymes associated in the regulation of endocytic cargo trafficking. It shows an exquisite selectivity for Lys63-linked polyubiquitin chains that are the main chains involved in cargo sorting. The first step requires the ESCRT-0 complex that comprises the STAM and hepatocyte growth factor-regulated substrate (Hrs) proteins. Previous studies have shown that the presence of the STAM protein increases the efficiency of Lys63-linked polyubiquitin chain cleavage by AMSH, one of the deubiquitinating enzyme involved in lysosomal degradation. In the present study, we are seeking to understand if a particular structural organization among these three key players is responsible for the stimulation of the catalytic activity of AMSH. To address this question, we first monitored the interaction between the ubiquitin interacting motif (UIM)-SH3 construct of STAM2 and the Lys63-linked diubiquitin (Lys63-Ub2) chains by means of NMR. We show that Lys63-Ub2 is able to bind either the UIM or the SH3 domain without any selectivity. We further demonstrate that the SH3 binding motif (SBM) of AMSH (AMSH-SBM) outcompetes Lys63-Ub2 for binding SH3. Additionally, we show how different AMSH-SBM variants, modified by their sequence and length, exhibit similar equilibrium dissociation constants when binding SH3 but significantly differ in their dissociation rate constants. Finally, we report the solution NMR structure of the AMSH-SBM/SH3 complex and propose a structural organization where the AMSH-SBM interacts with the STAM2-SH3 domain and contributes to the correct positioning of AMSH prior to polyubiquitin chains' cleavage.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Magnetic Resonance Spectroscopy , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , Ubiquitins/chemistry , Ubiquitins/metabolism , Humans , Models, Biological , Models, Molecular , Protein Binding
14.
J Nat Prod ; 79(4): 838-44, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27008174

ABSTRACT

Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 µM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.


Subject(s)
Acetophenones/isolation & purification , Anacardic Acids/isolation & purification , Anacardic Acids/pharmacology , Myristicaceae/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Resorcinols/isolation & purification , Acetophenones/chemistry , Acetophenones/pharmacology , Anacardic Acids/chemistry , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , BH3 Interacting Domain Death Agonist Protein/drug effects , Malaysia , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Bark/chemistry , Proto-Oncogene Proteins c-bcl-2/drug effects , Resorcinols/chemistry , Resorcinols/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/drug effects , bcl-X Protein/metabolism
15.
FEBS Lett ; 586(19): 3379-84, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22841719

ABSTRACT

To date, the signal transducing adaptor molecule 2 (STAM2) was shown to harbour two ubiquitin binding domains (UBDs) known as the VHS and UIM domains, while the SH3 domain of STAM2 was reported to interact with deubiquitinating enzymes (DUBs) like UBPY and AMSH. In the present study, NMR evidences the interaction of the STAM2 SH3 domain with ubiquitin, demonstrating that SH3 constitutes the third UBD of STAM2. Furthermore, we show that a UBPY-derived peptide can outcompete ubiquitin for SH3 binding and vice versa. These results suggest that the SH3 domain of STAM2 plays versatile roles in the context of ubiquitin mediated receptor sorting.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Amino Acid Substitution , Binding, Competitive , Endopeptidases/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Ubiquitin/chemistry , Ubiquitin Thiolesterase/chemistry , src Homology Domains
16.
FEBS J ; 279(16): 2863-75, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22715856

ABSTRACT

Muscle creatine kinase (MCK; EC2.7.3.2) is a 86 kDa homodimer that belongs to the family of guanidino kinases. MCK has been intensively studied for several decades, but it is still not known why it is a dimer because this quaternary structure does not translate into obvious structural or functional advantages over the homologous monomeric arginine kinase. In particular, it remains to be demonstrated whether MCK subunits are independent. Here, we describe NMR chemical-shift perturbation and relaxation experiments designed to study the active site 320s flexible loop of this enzyme. The analysis was performed with the enzyme in its ligand-free and MgADP-complexed forms, as well as with the transition-state analogue abortive complex (MCK-Mg-ADP-creatine-nitrate ion). Our data indicate that each subunit can bind substrates independently.


Subject(s)
Creatine Kinase, MM Form/chemistry , Creatine Kinase, MM Form/metabolism , Adenosine Diphosphate/metabolism , Animals , Catalytic Domain , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Subunits/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...