Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1865: 233-241, 2018.
Article in English | MEDLINE | ID: mdl-30151770

ABSTRACT

Accessibility and imaging of cell compartments in big specimens are crucial for cellular biological research but also a matter of contention. Confocal imaging and tissue clearing on whole organs allow for 3D imaging of cellular structures after being subjected to in-toto immunohistochemistry. Lately, the passive CLARITY technique (PACT) has been adapted to clear and immunolabel large specimens or individual organs of several aquatic species. We recently demonstrated tissue clearing on one-week old tadpole brain (Fini et al., Sci Rep 7:43786, 2017). We here describe a further simplified version with clearing of small tissue samples (thickness inferior to 500 µm)) carried out by immersion in a fructose-based high-refractive index solution (fbHRI). By refining steps of the protocol, we were able to reduce the overall procedure time by two thirds. This offers the advantages of reducing the time of experimentation to a week and minimizes procedure-induced tissue deformations. This protocol can be easily adapted to be performed on thick section. We present an example of immunohistochemistry performed on NF45 Xenopus laevis brains with anti-pH 3 (phosphorylated histone H3) antibody used to stain chromatin condensation commonly associated with proliferation.


Subject(s)
Imaging, Three-Dimensional/methods , Xenopus laevis/metabolism , Animals , Brain/metabolism , Fluorescent Dyes/metabolism , Head , Larva , Pigmentation , Triiodothyronine/pharmacology , Xenopus laevis/embryology
2.
Dev Neurobiol ; 78(6): 618-626, 2018 06.
Article in English | MEDLINE | ID: mdl-29239126

ABSTRACT

Microglia participate in synapse remodeling in the cortex and hippocampus during mouse postnatal development. Although sex differences in microglia activity during embryonic development have been reported in these regions, it remains unexplored whether microglia show sexually dimorphic features during the early postnatal period, a critical window for synapse formation and maturation. Here, we investigated morphological and functional features of microglia across early postnatal development as well as morphological features of both pre- and postsynaptic neuronal compartments in the mouse hippocampus. We found a sex-dependent shift in microglia volume and phagocytic capacity across the first four postnatal weeks. Measurements of synaptic features revealed sex differences in the density of synaptic spines and boutons during the second postnatal week. These data are consistent with a precocious development of both microglia and synapses in the female brain. We further hypothesize that this bias may contribute to sex-specific brain wiring. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 618-626, 2018.


Subject(s)
Hippocampus/cytology , Hippocampus/growth & development , Microglia/cytology , Sex Characteristics , Synapses/physiology , Animals , Dendritic Spines/physiology , Female , Hippocampus/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/physiology , Phagocytosis/physiology
3.
Sci Rep ; 7: 43012, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211501

ABSTRACT

Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensional imaging of whole organs recently became an important challenge to better understand their architecture and allow cell enumeration. Several protocols have thus been developed to enhance sample transparency, a limiting step for imaging large biological samples. However, none of these methods has been applied to the zebrafish testis. We tested five clearing protocols to determine if some of them could be applied with only small modifications to the testis. We compared clearing efficiency at both macroscopic and microscopic levels. CUBIC and PACT were suitable for an efficient transparency, an optimal optical penetration, the GFP fluorescence preservation and avoiding meaningful tissue deformation. Finally, we succeeded in whole testis 3D capture at a cellular resolution with both CUBIC and PACT, which will be valuable in a standard workflow to investigate the 3D architecture of the testis and its cellular content. This paves the way for further development of high content phenotyping studies in several fields including development, genetic or toxicology.


Subject(s)
Imaging, Three-Dimensional , Testis/diagnostic imaging , Animals , Animals, Genetically Modified/metabolism , Male , Microscopy, Fluorescence, Multiphoton , Optical Imaging , Zebrafish
4.
Bio Protoc ; 7(23): e2636, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-34595304

ABSTRACT

In studies of brain function, it is essential to understand the underlying neuro-architecture. Very young zebrafish larvae are widely used for neuroarchitecture studies, due to their size and natural transparency. However, this model system has several limitations, due to the immaturity, high rates of development and limited behavioral repertoire of the animals used. We describe here a modified version of the passive clearing technique (PACT) ( Chung et al., 2013 ; Tomer et al., 2014 ; Yang et al., 2014 ; Treweek et al., 2015) , which facilitates neuroanatomical studies on large specimens of aquatic species. This method was initially developed for zebrafish (Danio rerio) ( Frétaud et al., 2017 ; Mayrhofer et al., 2017 ; Xavier et al., 2017 ), but has also been successfully tested on other fish, such as medaka (Oryzias latipes) ( Dambroise et al., 2017 ), Mexican cave fish (Astyanax mexicaus) and African zebra mbuna (Metriaclima zebra), and on other aquatic species, such as Xenopus spp. (Xenopus laevis, Xenopus tropicalis) ( Fini et al., 2017 ) . This protocol, based on the CLARITY method developed and modified by Deisseroth's laboratory and others ( Chung et al., 2013 ; Tomer et al., 2014 ; Yang et al., 2014 ), was adapted for use in aquatic species, including zebrafish in particular (zPACT). This protocol is designed to render zebrafish specimens optically transparent while preserving the overall architecture of the tissue, through crosslinking in a polyacrylamide/formaldehyde mesh. Most of the lipids present in the specimen are then removed by SDS treatment, to homogenize the refractive index of the specimen by eliminating light scattering at the water/lipid interface, which causes opacity. The final clearing step, consists of the incubation of the specimen in a fructose-based mounting medium (derived from SeeDB) ( Ke et al., 2013 ) , with a refractive index matching that of the objective lens of the microscope. The combination of this technique with the use of genetically modified zebrafish in which green fluorescent protein (GFP) is expressed in specific cell populations provides opportunities to describe anatomical details not visible with other techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...