Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 587(Pt 14): 3679-90, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19470780

ABSTRACT

In vitro experiments indicate a non-metabolic role of muscle glycogen in contracting skeletal muscles. Since the sequence of events in excitation\#8211;contraction (E\#8211;C) coupling is known to be located close to glycogen granules, at specific sites on the fibre, we hypothesized that the distinct compartments of glycogen have specific effects on muscle fibre contractility and fatigability. Single skeletal muscle fibres (n = 19) from fed and fasted rats were mechanically skinned and divided into two segments. In one segment glycogen localization and volume fraction were estimated by transmission electron microscopy. The other segment was mechanically skinned and, in the presence of high and constant myoplasmic ATP and PCr, electrically stimulated (10 Hz, 0.8 s every 3 s) eliciting repeated tetanic contractions until the force response was decreased by 50% (mean +/- S.E.M., 81 +/- 16, range 22-252 contractions). Initially the total myofibrillar glycogen volume percentage was 0.46 +/- 0.07%, with 72 +/- 3% in the intermyofibrillar space and 28 +/- 3% in the intramyofibrillar space. The intramyofibrillar glycogen content was positively correlated with the fatigue resistance capacity (r(2) = 0.32, P = 0.02). Intermyofibrillar glycogen was inversely correlated with the half-relaxation time in the unfatigued tetanus (r(2) = 0.25, P = 0.03). These results demonstrate for the first time that two distinct subcellular populations of glycogen have different roles in contracting single muscle fibres under conditions of high myoplasmic ATP.


Subject(s)
Glycogen/metabolism , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle Fibers, Skeletal/physiology , Physical Endurance/physiology , Animals , Cells, Cultured , Male , Rats , Rats, Sprague-Dawley , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...