Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Neurooncol Adv ; 4(1): vdac019, 2022.
Article in English | MEDLINE | ID: mdl-35356807

ABSTRACT

Background: Cannabidiol (CBD), a nonpsychoactive cannabinoid with a low toxicity profile, has been shown to produce antitumor activity across cancers in part through selective production of reactive oxygen species (ROS) in tumor cells. The alkylating agent, temozolomide (TMZ), is standard of care for treatment of glioblastoma (GBM). It can trigger increased ROS to induce DNA damage. It has also been reported that downregulating the expression of RAD51, an important DNA damage repair protein, leads to sensitization of GBM to TMZ. Methods: We determined the extent to which CBD enhanced the antitumor activity of TMZ in multiple orthotopic models of GBM. In addition, we investigated the potential for CBD to enhance the antitumor activity of TMZ through production of ROS and modulation of DNA repair pathways. Results: CBD enhanced the activity of TMZ in U87 MG and U251 GBM cell lines and in patient-derived primary GBM163 cells leading to stimulation of ROS, activation of the ROS sensor AMP-activated protein kinase (AMPK), and upregulation of the autophagy marker LC3A. CBD produced a sensitization of U87 and GBM163-derived intracranial (i.c.) tumors to TMZ and significantly increased survival of tumor-bearing mice. However, these effects were not observed in orthotopic models derived from GBM with intact methylguanine methyltransferase (MGMT) expression. We further demonstrate that CBD inhibited RAD51 expression in MGMT-methylated models of GBM, providing a potential mechanism for tumor sensitization to TMZ by CBD. Conclusion: These data support the potential therapeutic benefits of using CBD to enhance the antitumor activity of TMZ in GBM patients.

2.
ACS Med Chem Lett ; 10(1): 50-55, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655946

ABSTRACT

The further optimization of ER-α degradation efficacy of a series of ER modulators by refining side-chain substitution led to efficacious selective estrogen receptor degraders (SERDs). A fluoromethyl azetidine group was found to be preferred and resulted in the identification of bis-phenol chromene 17ha. In a tamoxifen-resistant breast cancer xenograft model, 17ha (ER-α degradation efficacy = 97%) demonstrated tumor regression, together with robust reduction of intratumoral ER-α levels. However, despite superior oral exposure, 5a (ER-α degradation efficacy = 91%) had inferior activity. This result suggests that optimizing ER-α degradation efficacy leads to compounds with robust effects in a model of tamoxifen-resistant breast cancer. Compound 17ha (GDC-0927) was evaluated in clinical trials in women with metastatic estrogen receptor-positive breast cancer.

4.
Bioorg Med Chem Lett ; 29(3): 367-372, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30587451
5.
J Med Chem ; 61(17): 7917-7928, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30086626

ABSTRACT

About 75% of breast cancers are estrogen receptor alpha (ER-α) positive, and women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, but resistance often emerges. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and shows some activity in patients who have progressed on antihormonal agents. However, fulvestrant must be administered by intramuscular injections that limit its efficacy. We describe the optimization of ER-α degradation efficacy of a chromene series of ER modulators resulting in highly potent and efficacious SERDs such as 14n. When examined in a xenograft model of tamoxifen-resistant breast cancer, 14n (ER-α degradation efficacy = 91%) demonstrated robust activity, while, despite superior oral exposure, 15g (ER-α degradation efficacy = 82%) was essentially inactive. This result suggests that optimizing ER-α degradation efficacy in the MCF-7 cell line leads to compounds with robust effects in models of tamoxifen-resistant breast cancer derived from an MCF-7 background.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzopyrans/chemistry , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Estrogen Receptor alpha/metabolism , Selective Estrogen Receptor Modulators/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Mice , Rats , Selective Estrogen Receptor Modulators/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Nat Commun ; 8(1): 241, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28808226

ABSTRACT

Leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the disease in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.Leukemic cells depend on the nucleotide synthesis pathway to proliferate. Here the authors use metabolomics and proteomics to show that inhibition of ATR reduced the activity of these pathways thus providing a valuable therapeutic target in leukemia.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Nucleotides/biosynthesis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Biosynthetic Pathways , DNA Replication , Deoxycytidine Kinase/genetics , Deoxycytidine Kinase/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism
7.
Elife ; 52016 07 13.
Article in English | MEDLINE | ID: mdl-27410477

ABSTRACT

ER-targeted therapeutics provide valuable treatment options for patients with ER+ breast cancer, however, current relapse and mortality rates emphasize the need for improved therapeutic strategies. The recent discovery of prevalent ESR1 mutations in relapsed tumors underscores a sustained reliance of advanced tumors on ERα signaling, and provides a strong rationale for continued targeting of ERα. Here we describe GDC-0810, a novel, non-steroidal, orally bioavailable selective ER downregulator (SERD), which was identified by prospectively optimizing ERα degradation, antagonism and pharmacokinetic properties. GDC-0810 induces a distinct ERα conformation, relative to that induced by currently approved therapeutics, suggesting a unique mechanism of action. GDC-0810 has robust in vitro and in vivo activity against a variety of human breast cancer cell lines and patient derived xenografts, including a tamoxifen-resistant model and those that harbor ERα mutations. GDC-0810 is currently being evaluated in Phase II clinical studies in women with ER+ breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Cinnamates/administration & dosage , Indazoles/administration & dosage , Receptors, Estrogen/administration & dosage , Animals , Cell Line, Tumor , Disease Models, Animal , Heterografts , Humans , Mice , Prospective Studies , Rats , Treatment Outcome
8.
Bioorg Med Chem Lett ; 25(22): 5163-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26463130

ABSTRACT

Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Receptor Antagonists/therapeutic use , Indazoles/therapeutic use , Tamoxifen/therapeutic use , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cinnamates/therapeutic use , Drug Resistance, Neoplasm , Estrogen Receptor Antagonists/metabolism , Female , Indazoles/chemistry , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
J Med Chem ; 58(12): 4888-904, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-25879485

ABSTRACT

Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Proteolysis/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Small Molecule Libraries/therapeutic use , Tamoxifen/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Breast/drug effects , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Dogs , Drug Discovery , Drug Resistance, Neoplasm/drug effects , Female , Heterografts , Humans , Mice , Rats , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics
10.
Clin Pharmacokinet ; 54(3): 261-72, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25421879

ABSTRACT

INTRODUCTION: The efficacy of nebulized sodium nitrite (AIR001) has been demonstrated in animal models of pulmonary arterial hypertension (PAH), but it was not known if inhaled nitrite would be well tolerated in human subjects at exposure levels associated with efficacy in these models. METHODS: Inhaled nebulized sodium nitrite was assessed in three independent studies in a total of 82 healthy male and female subjects. Study objectives included determination of the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) under normal and mildly hypoxic conditions, and following co-administration with steady-state sildenafil, assessment of nitrite pharmacokinetics, and evaluation of the fraction exhaled nitric oxide (FENO) and concentrations of iron-nitrosyl hemoglobin (Hb(Fe)-NO) and S-nitrosothiols (R-SNO) as biomarkers of local and systemic NO exposure, respectively. RESULTS: Nebulized sodium nitrite was well tolerated following 6 days of every 8 h administration up to 90 mg, producing significant increases in circulating Hb(Fe)-NO, R-SNO, and FENO. Pulmonary absorption of nitrite was rapid and complete, and plasma exposure dose was proportional through the MTD dosage level of 90 mg, without accumulation following repeated inhalation. At higher dosage levels, DLTs were orthostasis (observed at 120 mg) and hypotension with tachycardia (at 176 mg), but venous methemoglobin did not exceed 3.0 % at any time in any subject. Neither the tolerability nor pharmacokinetics of nitrite was impacted by conditions of mild hypoxia, or co-administration with sildenafil, supporting the safe use of inhaled nitrite in the clinical setting of PAH. CONCLUSION: On the basis of these results, nebulized sodium nitrite (AIR001) has been advanced into randomized trials in PAH patients.


Subject(s)
Sodium Nitrite/administration & dosage , Administration, Inhalation , Adolescent , Adult , Biomarkers/metabolism , Cohort Studies , Drug Interactions , Female , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Male , Middle Aged , Nitric Oxide/metabolism , Piperazines/administration & dosage , Purines/administration & dosage , Sildenafil Citrate , Sodium Nitrite/adverse effects , Sodium Nitrite/pharmacology , Sulfonamides/administration & dosage , Young Adult
11.
Int J Toxicol ; 33(3): 162-174, 2014 05.
Article in English | MEDLINE | ID: mdl-24801488

ABSTRACT

Historically, nitrogen oxides (NOx) in food, drinking water, as well as in the atmosphere have been believed to be associated with adverse health consequences. More recently, NOx have been implicated in normal homeostatic regulation, and exogenous administration has been associated with health benefits. One such potential health benefit is the prospect that inhaled nitrite will lower pulmonary blood pressure (BP) in patients with pulmonary arterial hypertension (PAH), a disease with poor prognosis due to the lack of effective treatment. To characterize potential chronic toxicity associated with inhaled AIR001 (sodium nitrite) for use in the treatment of PAH, 26-week exposures to AIR001 were carried out by inhalation administration in rats and by intravenous infusion in dogs. The studies revealed that methemoglobinemia was the primary adverse effect in both species. Methemoglobin levels less than 40% were well tolerated in both species, while levels greater than 50% methemoglobin caused death in some rats. Additionally, a decrease in systemic BP was also observed with inhaled AIR001 exposure in dogs. These acute secondary and exaggerated pharmacological effects occurred daily throughout the 26-week treatment period. Chronic exposure did not alter the magnitude of either methemoglobinemia or hypotension or result in additional toxicity or compensatory responses. Based on the exposure levels that produced these pharmacodynamic responses in animals, relative to those measured in early clinical studies, it appears that an adequate margin of safety exists to support the continued clinical development of inhaled AIR001.


Subject(s)
Antihypertensive Agents/adverse effects , Drugs, Investigational/adverse effects , Nasal Cavity/drug effects , Nasal Mucosa/drug effects , Sodium Nitrite/adverse effects , Administration, Inhalation , Animals , Animals, Inbred Strains , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/therapeutic use , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drugs, Investigational/administration & dosage , Drugs, Investigational/therapeutic use , Female , Hypertension, Pulmonary/drug therapy , Hypotension/blood , Hypotension/chemically induced , Hypotension/metabolism , Hypotension/pathology , Infusions, Intravenous , Male , Methemoglobinemia/blood , Methemoglobinemia/chemically induced , Methemoglobinemia/metabolism , Methemoglobinemia/pathology , Nasal Cavity/immunology , Nasal Cavity/metabolism , Nasal Cavity/pathology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , No-Observed-Adverse-Effect Level , Rats, Sprague-Dawley , Risk Assessment , Sodium Nitrite/administration & dosage , Sodium Nitrite/therapeutic use , Species Specificity , Toxicity Tests, Chronic
12.
J Clin Oncol ; 31(28): 3525-30, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24002508

ABSTRACT

PURPOSE: ARN-509 is a novel androgen receptor (AR) antagonist for the treatment of castration-resistant prostate cancer (CRPC). ARN-509 inhibits AR nuclear translocation and AR binding to androgen response elements and, unlike bicalutamide, does not exhibit agonist properties in the context of AR overexpression. This first-in-human phase I study assessed safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of ARN-509 in men with metastatic CRPC. PATIENTS AND METHODS: Thirty patients with progressive CRPC received continuous daily oral ARN-509 at doses between 30 and 480 mg, preceded by administration of a single dose followed by a 1-week observation period with pharmacokinetic sampling. Positron emission tomography/computed tomography imaging was conducted to monitor [(18)F]fluoro-α-dihydrotestosterone (FDHT) binding to AR in tumors before and during treatment. Primary objective was to determine pharmacokinetics, safety, and recommended phase II dose. RESULTS: Pharmacokinetics were linear and dose proportional. Prostate-specific antigen declines at 12 weeks (≥ 50% reduction from baseline) were observed in 46.7% of patients. Reduction in FDHT uptake was observed at all doses, with a plateau in response at ≥ 120-mg dose, consistent with saturation of AR binding. The most frequently reported adverse event was grade 1/2 fatigue (47%). One dose-limiting toxicity event (grade 3 abdominal pain) occurred at the 300-mg dose. Dose escalation to 480 mg did not identify a maximum-tolerated dose. CONCLUSION: ARN-509 was safe and well tolerated, displayed dose-proportional pharmacokinetics, and demonstrated pharmacodynamic and antitumor activity across all dose levels tested. A maximum efficacious dose of 240 mg daily was selected for phase II exploration based on integration of preclinical and clinical data.


Subject(s)
Androgen Antagonists/therapeutic use , Androgen Receptor Antagonists/therapeutic use , Bone Neoplasms/drug therapy , Castration , Prostatic Neoplasms/drug therapy , Thiohydantoins/therapeutic use , Aged , Aged, 80 and over , Androgen Antagonists/pharmacokinetics , Androgen Receptor Antagonists/pharmacokinetics , Bone Neoplasms/secondary , Diagnostic Imaging , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Grading , Neoplastic Cells, Circulating/pathology , Prognosis , Prostate-Specific Antigen/blood , Prostatic Neoplasms/pathology , Thiohydantoins/pharmacokinetics , Tissue Distribution
13.
Cancer Res ; 72(6): 1494-503, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22266222

ABSTRACT

Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR pathway-targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor that is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics, and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/d of ARN-509, whereas the same response required 100 mg/kg/d of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.


Subject(s)
Androgen Antagonists/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Prostatic Neoplasms/drug therapy , Thiohydantoins/therapeutic use , Androgen Antagonists/pharmacokinetics , Anilides/pharmacokinetics , Anilides/therapeutic use , Animals , Antineoplastic Agents, Hormonal/blood , Antineoplastic Agents, Hormonal/pharmacokinetics , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Nitriles/pharmacokinetics , Nitriles/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/blood , Phenylthiohydantoin/pharmacokinetics , Phenylthiohydantoin/therapeutic use , Rats , Receptors, Androgen/drug effects , Thiohydantoins/blood , Thiohydantoins/chemical synthesis , Thiohydantoins/pharmacokinetics , Tosyl Compounds/pharmacokinetics , Tosyl Compounds/therapeutic use , Xenograft Model Antitumor Assays
14.
Bioorg Med Chem Lett ; 22(2): 1237-41, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22182498

ABSTRACT

The overproduction of nitric oxide during the biological response to inflammation by the nitric oxide synthase (NOS) enzymes have been implicated in the pathology of many diseases. By removal of the amide core from uHTS-derived quinolone 4, a new series highly potent heteroaromatic-aminomethyl quinolone iNOS inhibitors 8 were identified. SAR studies led to identification of piperazine 22 and pyrimidine 32, both of which reduced plasma nitrates following oral dosing in a mouse lipopolysaccharide challenge assay.


Subject(s)
Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Quinolones/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Models, Molecular , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Quinolones/chemical synthesis , Quinolones/chemistry , Stereoisomerism , Structure-Activity Relationship
15.
J Pharmacol Exp Ther ; 336(2): 468-78, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21036913

ABSTRACT

Nitric oxide (NO) derived from neuronal nitric-oxide synthase (nNOS) and inducible nitric-oxide synthase (iNOS) plays a key role in various pain and inflammatory states. KLYP961 (4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one) inhibits the dimerization, and hence the enzymatic activity of human, primate, and murine iNOS and nNOS (IC(50) values 50-400 nM), with marked selectivity against endothelial nitric-oxide synthase (IC(50) >15,000 nM). It has ideal drug like-properties, including excellent rodent and primate pharmacokinetics coupled with a minimal off-target activity profile. In mice, KLYP961 attenuated endotoxin-evoked increases in plasma nitrates, a surrogate marker of iNOS activity in vivo, in a sustained manner (ED(50) 1 mg/kg p.o.). KLYP961 attenuated pain behaviors in a mouse formalin model (ED(50) 13 mg/kg p.o.), cold allodynia in the chronic constriction injury model (ED(50) 25 mg/kg p.o.), or tactile allodynia in the spinal nerve ligation model (ED(50) 30 mg/kg p.o.) with similar efficacy, but superior potency relative to gabapentin, pregabalin, or duloxetine. Unlike morphine, the antiallodynic activity of KLYP961 did not diminish upon repeated dosing. KLYP961 also attenuated carrageenin-induced edema and inflammatory hyperalgesia and writhing response elicited by phenylbenzoquinone with efficacy and potency similar to those of celecoxib. In contrast to gabapentin, KLYP961 did not impair motor coordination at doses as high as 1000 mg/kg p.o. KLYP961 also attenuated capsaicin-induced thermal allodynia in rhesus primates in a dose-related manner with a minimal effective dose (≤ 10 mg/kg p.o.) and a greater potency than gabapentin. In summary, KLYP961 represents an ideal tool with which to probe the physiological role of NO derived from iNOS and nNOS in human pain and inflammatory states.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fluoroquinolones/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Pyrazines/pharmacology , Analgesics/pharmacology , Animals , Cells, Cultured , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/toxicity , Gastrointestinal Transit/drug effects , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Activity/drug effects , Protein Multimerization , Pyrazines/pharmacokinetics , Pyrazines/toxicity
16.
J Med Chem ; 53(21): 7739-55, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20931971

ABSTRACT

Three isoforms of nitric oxide synthase (NOS), dimeric enzymes that catalyze the formation of nitric oxide (NO) from arginine, have been identified. Inappropriate or excessive NO produced by iNOS and/or nNOS is associated with inflammatory and neuropathic pain. Previously, we described the identification of a series of amide-quinolinone iNOS dimerization inhibitors that although potent, suffered from high clearance and limited exposure in vivo. By conformationally restricting the amide of this progenitor series, we describe the identification of a novel series of benzimidazole-quinolinone dual iNOS/nNOS inhibitors with low clearance and sustained exposure in vivo. Compounds were triaged utilizing an LPS challenge assay coupled with mouse and rhesus pharmacokinetics and led to the identification of 4,7-imidazopyrazine 42 as the lead compound. 42 (KD7332) (J. Med. Chem. 2009, 52, 3047 - 3062) was confirmed as an iNOS dimerization inhibitor and was efficacious in the mouse formalin model of nociception and Chung model of neuropathic pain, without showing tolerance after repeat dosing. Further 42 did not affect motor coordination up to doses of 1000 mg/kg, demonstrating a wide therapeutic margin.


Subject(s)
Analgesics/chemical synthesis , Fluoroquinolones/chemical synthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Pain/drug therapy , Pyrazines/chemical synthesis , Administration, Oral , Analgesics/chemistry , Analgesics/pharmacology , Animals , Cell Line , Drug Tolerance , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Pain/etiology , Pain Measurement , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/etiology , Protein Multimerization , Pyrazines/chemistry , Pyrazines/pharmacology , Rotarod Performance Test , Structure-Activity Relationship
18.
J Med Chem ; 52(9): 3047-62, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19374401

ABSTRACT

There are three isoforms of dimeric nitric oxide synthases (NOS) that convert arginine to citrulline and nitric oxide. Inducible NOS is implicated in numerous inflammatory diseases and, more recently, in neuropathic pain states. The majority of existing NOS inhibitors are either based on the structure of arginine or are substrate competitive. We describe the identification from an ultra high-throughput screen of a novel series of quinolinone small molecule, nonarginine iNOS dimerization inhibitors. SAR studies on the screening hit, coupled with an in vivo lipopolysaccharide (LPS) challenge assay measuring plasma nitrates and drug levels, rapidly led to the identification of compounds 12 and 42--potent inhibitors of the human and mouse iNOS enzyme that were highly selective over endothelial NOS (eNOS). Following oral dosing, compounds 12 and 42 gave a statistical reduction in pain behaviors in the mouse formalin model, while 12 also statistically reduced neuropathic pain behaviors in the chronic constriction injury (Bennett) model.


Subject(s)
Drug Discovery , Fluoroquinolones/administration & dosage , Fluoroquinolones/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Pain/drug therapy , Protein Multimerization/drug effects , Pyrazines/administration & dosage , Pyrazines/pharmacology , Quinolones/administration & dosage , Quinolones/pharmacology , Administration, Oral , Animals , Cell Line , Constriction, Pathologic/chemically induced , Constriction, Pathologic/drug therapy , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fluoroquinolones/chemistry , Fluoroquinolones/therapeutic use , Formaldehyde/toxicity , Humans , Inhibitory Concentration 50 , Lipopolysaccharides/toxicity , Mice , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Protein Structure, Quaternary , Pyrazines/chemistry , Pyrazines/therapeutic use , Quinolones/chemistry , Quinolones/therapeutic use , Structure-Activity Relationship , Substrate Specificity
19.
J Pharmacol Exp Ther ; 328(2): 663-70, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19017848

ABSTRACT

Selective androgen receptor modulators (SARMs) are a new class of molecules in development to treat a variety of diseases. SARMs maintain the beneficial effects of androgens, including increased muscle mass and bone density, while having reduced activity on unwanted side effects. The mechanisms responsible for the tissue-selective activity of SARMs are not fully understood, and the pharmacokinetic (PK)/pharmacodynamic (PD) relationships are poorly described. Tissue-specific compound distribution potentially could be a mechanism responsible for apparent tissue selectivity. We examined the PK/PD relationship of a novel SARM, LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo[3,2-f]quinolin-7(6H)-one], in a castrated rat model of androgen deficiency. LGD-3303 has potent activity on levator ani muscle but is a partial agonist on the preputial gland and ventral prostate. LGD-3303 never stimulated ventral prostate above intact levels despite increasing plasma concentrations of compound. Tissue-selective activity was maintained when LGD-3303 was dosed orally or by continuous infusion, two routes of administration with markedly different time versus exposure profiles. Despite the greater muscle activity relative to prostate activity, local tissue concentrations of LGD-3303 were higher in the prostate than in the levator ani muscle. LGD-3303 has SARM properties that are independent of its pharmacokinetic profile, suggesting that the principle mechanism for tissue-selective activity is the result of altered molecular interactions at the level of the androgen receptor.


Subject(s)
Androgen Antagonists/pharmacokinetics , Androgen Receptor Antagonists , Pyrroles/pharmacokinetics , Quinolones/pharmacokinetics , Administration, Oral , Androgen Antagonists/administration & dosage , Androgens , Animals , Drug Administration Routes , Male , Models, Animal , Pyrroles/pharmacology , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley
20.
J Med Chem ; 50(21): 5049-52, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17887661

ABSTRACT

The androgen receptor is a ligand inducible transcription factor that is involved in a broad range of physiological functions. Here we describe the discovery of a new class of orally available selective androgen receptor modulators. The lead compound, 6-[(2R,5R)-2-methyl-5-((R)-2,2,2-trifluoro-1-hydroxyethyl)pyrrolidin-1-yl]-4-trifluoromethylquinolin-2(1H)-one (6a), showed excellent anabolic activity in muscle with reduced effect on the prostate in a rat model of hypogonadism. The compound also improved bone strength in a rat model of post-menopausal osteoporosis.


Subject(s)
Anabolic Agents/chemical synthesis , Androgen Receptor Antagonists , Androgens , Bone Density Conservation Agents/chemical synthesis , Pyrrolidines/chemical synthesis , Quinolines/chemical synthesis , Quinolones/chemical synthesis , Administration, Oral , Anabolic Agents/pharmacokinetics , Anabolic Agents/pharmacology , Animals , Biological Availability , Bone Density Conservation Agents/pharmacokinetics , Bone Density Conservation Agents/pharmacology , Female , Humans , Hypogonadism/drug therapy , Hypogonadism/pathology , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Organ Size/drug effects , Osteoporosis, Postmenopausal/drug therapy , Prostate/drug effects , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Quinolines/pharmacokinetics , Quinolines/pharmacology , Quinolones/pharmacokinetics , Quinolones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...