Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 86(Pt 2): 375-384, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15659757

ABSTRACT

The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein was isolated from [35S]methionine- and [33P]orthophosphate-labelled RSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role of tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580, an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependent tyrosine kinase activity and that this modification influences its cellular distribution.


Subject(s)
Respiratory Syncytial Virus, Human/metabolism , Viral Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Amino Acid Sequence , Animals , Chlorocebus aethiops , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Molecular Sequence Data , Phosphorylation , Tyrosine/metabolism , Vero Cells , Viral Proteins/analysis , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...