Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(54): e202201497, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35726630

ABSTRACT

Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2'-bipyridin]-6-yl)phenyl tridentate (N∧ N∧ C) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) G-quadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (Ka ) in the range of 2-5×105  M-1 , lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNA-melting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔTm >30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the c-myc G-quadruplex thymine 'cap' ('open' vs. 'closed'), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.


Subject(s)
G-Quadruplexes , Radiation-Sensitizing Agents , Amides , DNA/chemistry , Genes, myc , Imides , Ligands , Morpholines , Oxazoles , Platinum Compounds , Proline , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Thymine
2.
Molecules ; 22(12)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29210998

ABSTRACT

Oligomeric compounds, constituted of consecutive N,O-heteroaromatic rings, introduce useful and tunable properties as alternative ligands for biomolecular recognition. In this study, we have explored a synthetic scheme relying on Van Leusen oxazole formation, in conjunction with C-H activation of the formed oxazoles and their subsequent C-C cross-coupling to 2-bromopyridines in order to assemble a library of variable-length, 'head-to-tail'-connected, pyridyl-oxazole ligands. Through investigation of the interaction of the three longer ligands (5-mer, 6-mer, 7-mer) with cancer-relevant G-quadruplex structures (human telomeric/22AG and c-Myc oncogene promoter/Myc2345-Pu22), the asymmetric pyridyl-oxazole motif has been demonstrated to be a prominent recognition element for G-quadruplexes. Fluorescence titrations reveal excellent binding affinities of the 7-mer and 6-mer for a Na⁺-induced antiparallel 22AG G-quadruplex (KD = 0.6 × 10-7 M-1 and 0.8 × 10-7 M-1, respectively), and satisfactory (albeit lower) affinities for the 22AG/K⁺ and Myc2345-Pu22/K⁺ G-quadruplexes. All ligands tested exhibit substantial selectivity for G-quadruplex versus duplex (ds26) DNA, as evidenced by competitive Förster resonance energy transfer (FRET) melting assays. Additionally, the 7-mer and 6-mer are capable of promoting a sharp morphology transition of 22AG/K⁺ G-quadruplex.


Subject(s)
G-Quadruplexes , Ligands , Nucleotide Motifs , Circular Dichroism , Humans , Molecular Structure , Oxazoles/chemistry , Porphyrins/chemistry
3.
Inorg Chem ; 53(4): 2040-52, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24467343

ABSTRACT

Manganese(II) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid (Htolf) with the nitrogen-donor heterocyclic ligands 1,10-phenanthroline (phen), pyridine (py), or 2,2'-bipyridylamine (bipyam) and/or the oxygen-donor ligands H2O or N,N-dimethylformamide (DMF) have been synthesized and characterized. The crystal structures of complexes [Mn(tolf-O)(tolf-O,O')(phen)(H2O)], [Mn2(µ2-tolf-O,O')2(tolf-O,O')2(bipyam)2], [Mn2(µ2-H2O)(µ2-tolf-O,O')2(tolf-O)2(py)4]·1.5MeOH·py, and [Mn(µ2-tolf-O,O')2(DMF)2]n have been determined by X-ray crystallography. The interaction of the complexes with serum albumin proteins was investigated, and relative high binding constant values were calculated. The ability of the compounds to scavenge 1,1-diphenyl-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals was evaluated, and [Mn(tolf)2(phen)(H2O)] was the most active scavenger among the compounds. The compounds have also exhibited noteworthy in vitro inhibitory activity against soybean lipoxygenase. UV titration studies of the interaction of the complexes with calf-thymus (CT) DNA have proved the binding to CT DNA with [Mn(µ2-tolf)2(DMF)2]n exhibiting the highest DNA-binding constant (Kb = 5.21 (±0.35) × 10(5) M(-1)). The complexes bind to CT DNA probably via intercalation as suggested by DNA-viscosity measurements and competitive studies with ethidium bromide (EB), which revealed the ability of the complexes to displace the DNA-bound EB.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Coordination Complexes/chemical synthesis , Manganese/chemistry , ortho-Aminobenzoates/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cattle , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Crystallography, X-Ray , DNA , Ethidium/chemistry , Molecular Structure , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , ortho-Aminobenzoates/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...