Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 318(2): 772-81, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16690725

ABSTRACT

The excitatory neurotransmitter glutamate has been implicated in both migraine and persistent pain. The identification of the kainate receptor GLU(K5) in dorsal root ganglia, the dorsal horn, and trigeminal ganglia makes it a target of interest for these indications. We examined the in vitro and in vivo pharmacology of the competitive GLU(K5)-selective kainate receptor antagonist LY466195 [(3S,4aR,6S,8aR)-6-[[(2S)-2-carboxy-4,4-difluoro-1-pyrrolidinyl]-methyl]decahydro-3-isoquinolinecarboxylic acid)], the most potent GLU(K5) antagonist described to date. Comparisons were made to the competitive GLU(K5)/alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]-decahydroisoquinoline-3-carboxylic acid], other decahydroisoquinoline GLU(K5) receptor antagonists, and the noncompetitive AMPA receptor antagonist LY300168 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodi-azepine]. When characterized electrophysiologically in rat dorsal root ganglion neurons, LY466195 antagonized kainate (30 microM)-induced currents with an IC50 value of 0.045 +/- 0.011 microM. In HEK293 cells transfected with GLU(K5), GLU(K2)/GLU(K5), or GLU(K5)/GLU(K6) receptors, LY466195 produced IC50 values of 0.08 +/- 0.02, 0.34 +/- 0.17, and 0.07 +/- 0.02 microM, respectively. LY466195 was efficacious in a dural plasma protein extravasation (PPE) model of migraine with an ID100 value of 100 microg/kg i.v. LY466195 was also efficacious in the c-fos migraine model, with a dose of 1 microg/kg i.v. significantly reducing the number of Fos-positive cells in the rat nucleus caudalis after electrical stimulation of the trigeminal ganglion. Furthermore, LY466195 showed no contractile activity in the rabbit saphenous vein in vitro. The diethyl ester prodrug of LY466195 was also efficacious in the same PPE and c-fos models after oral administration at doses of 10 and 100 microg/kg, respectively while having no N-methyl-D-aspartate antagonist-like behavioral effects at oral doses up to 100 mg/kg.


Subject(s)
Isoquinolines/pharmacology , Receptors, Kainic Acid/antagonists & inhibitors , Animals , Benzodiazepines/pharmacology , Binding, Competitive/drug effects , Blood Proteins/metabolism , Calcium/metabolism , Electrophysiology , Excitatory Amino Acid Antagonists/pharmacology , Humans , In Vitro Techniques , Ligands , Male , Migraine Disorders/metabolism , Motor Activity/drug effects , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Neurons/drug effects , Neurons/metabolism , Phencyclidine/pharmacology , Proto-Oncogene Proteins c-fos/biosynthesis , Rabbits , Rats , Receptors, AMPA/antagonists & inhibitors , Saphenous Vein/cytology , Saphenous Vein/drug effects , Transfection
2.
Chembiochem ; 3(10): 999-1009, 2002 Oct 04.
Article in English | MEDLINE | ID: mdl-12362366

ABSTRACT

A new class of potent dopamine D(4) antagonists was discovered with selectivity over dopamine D(2) and the alpha-1 adrenoceptor. The lead compound was discovered by screening our compound collection. The structure-activity relationships of substituted isoindoline rings and the chirality about the hydroxymethyl side chain were explored. The isoindoline analogues showed modest differences in potency and selectivity. The S enantiomer proved to be the more potent enantiomer at the D(4) receptor. Several analogues with greater than 100-fold selectivity for D(4) over D(2) and the alpha-1 adrenoreceptor were discovered. Several selective analogues were active in vivo upon oral or intraperitoneal administration. A chiral synthesis starting from either D- or L-O-benzylserine is also described.


Subject(s)
Dopamine D2 Receptor Antagonists , Indoles/chemistry , Indoles/pharmacology , Isoxazoles/chemistry , Isoxazoles/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Administration, Oral , Animals , Apomorphine/pharmacology , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology , Dizocilpine Maleate/metabolism , Indoles/chemical synthesis , Indoles/metabolism , Infusions, Parenteral , Isoxazoles/chemical synthesis , Piperidines/chemical synthesis , Prazosin/metabolism , Prazosin/pharmacology , Rats , Receptors, Dopamine D4 , Serine/analogs & derivatives , Serine/chemistry , Spiperone/metabolism , Spiperone/pharmacology , Stereoisomerism , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...