Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(17): 7571-7588, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38635980

ABSTRACT

Recently, global-scale efforts have been conducted for the electroreduction of CO2 as a potentially beneficial pathway for the conversion of greenhouse gases to useful chemicals and renewable fuels. This study focuses on the development of selective and sustainable electrocatalysts for the reduction of aqueous CO2 to CO. A RuIIcomplex [Ru(tptz)(ACN)Cl2] (RCMP) (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine, ACN = acetonitrile) was prepared as a molecular electrocatalyst for the CO2 reduction reaction in an aqueous solution. Density functional theory-calculated frontier molecular orbitals suggested that the tptz ligand plays a key role in dictating the electrocatalytic reactions. The RCMP electrocatalyst was grafted onto the graphene oxide (GO) surface both noncovalently (GO/RCMP) and covalently (GO-RCMP). The field emission scanning electron microscopy and elemental distribution analyses revealed the homogeneous distribution of the complex onto the GO sheet. The photoluminescence spectra confirmed accelerated charge-transfer in both nanohybrids. Compared to the bare complex, the GO-RCMP and GO/RCMP nanohybrids showed enhanced electrocatalytic activity, achieving >95% and 90% Faradaic efficiencies for CO production at more positive onset potentials, respectively. The GO-RCMP nanohybrid demonstrated outstanding electrocatalytic activity with a current of ∼84 µA. The study offers a perspective on outer- and inner-sphere electron-transfer mechanisms for electrochemical energy conversion systems.

2.
Nat Chem ; 15(2): 271-277, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36357789

ABSTRACT

Although the oxygen reduction reaction (ORR) involves multiple proton-coupled electron transfer processes, early studies reported the absence of kinetic isotope effects (KIEs) on polycrystalline platinum, probably due to the use of unpurified D2O. Here we developed a methodology to prepare ultra-pure D2O, which is indispensable for reliably investigating extremely surface-sensitive platinum single crystals. We find that Pt(111) exhibits much higher ORR activity in D2O than in H2O, with potential-dependent inverse KIEs of ~0.5, whereas Pt(100) and Pt(110) exhibit potential-independent inverse KIEs of ~0.8. Such inverse KIEs are closely correlated to the lower *OD coverage and weakened *OD binding strength relative to *OH, which, based on theoretical calculations, are attributed to the differences in their zero-point energies. This study suggests that the competing adsorption between *OH/*OD and *O2 probably plays an important role in the ORR rate-determining steps that involve a chemical step preceding an electrochemical step (CE mechanism).

4.
Nat Commun ; 13(1): 2550, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538173

ABSTRACT

The study of the OH adsorption process on Pt single crystals is of paramount importance since this adsorbed species is considered the main intermediate in many electrochemical reactions of interest, in particular, those oxidation reactions that require a source of oxygen. So far, it is frequently assumed that the OH adsorption on Pt only takes place at potentials higher than 0.55 V (versus the reversible hydrogen electrode), regardless of the Pt surface structure. However, by CO displacement experiments, alternating current voltammetry, and Raman spectroscopy, we demonstrate here that OH is adsorbed at more negative potentials on the low coordinated Pt atoms, the Pt steps. This finding opens a new door in the mechanistic study of many relevant electrochemical reactions, leading to a better understanding that, ultimately, can be essential to reach the final goal of obtaining improved catalysts for electrochemical applications of technological interest.

5.
ACS Catal ; 10(24): 14540-14551, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33362944

ABSTRACT

The formic acid oxidation reaction (FAOR) is one of the key reactions that can be used at the anode of low-temperature liquid fuel cells. To allow the knowledge-driven development of improved catalysts, it is necessary to deeply understand the fundamental aspects of the FAOR, which can be ideally achieved by investigating highly active model catalysts. Here, we studied SnO2-decorated Pd nanocubes (NCs) exhibiting excellent electrocatalytic performance for formic acid oxidation in acidic medium with a SnO2 promotion that boosts the catalytic activity by a factor of 5.8, compared to pure Pd NCs, exhibiting values of 2.46 A mg-1 Pd for SnO2@Pd NCs versus 0.42 A mg-1 Pd for the Pd NCs and a 100 mV lower peak potential. By using ex situ, quasi in situ, and operando spectroscopic and microscopic methods (namely, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption fine-structure spectroscopy), we identified that the initially well-defined SnO2-decorated Pd nanocubes maintain their structure and composition throughout FAOR. In situ Fourier-transformed infrared spectroscopy revealed a weaker CO adsorption site in the case of the SnO2-decorated Pd NCs, compared to the monometallic Pd NCs, enabling a bifunctional reaction mechanism. Therein, SnO2 provides oxygen species to the Pd surface at low overpotentials, promoting the oxidation of the poisoning CO intermediate and, thus, improving the catalytic performance of Pd. Our SnO x -decorated Pd nanocubes allowed deeper insight into the mechanism of FAOR and hold promise for possible applications in direct formic acid fuel cells.

6.
Nat Commun ; 11(1): 3489, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32661223

ABSTRACT

Copper is a widely studied catalyst material for the electrochemical conversion of carbon dioxide to valuable hydrocarbons. In particular, copper-based nanostructures expressing predominantly {100} facets have shown high selectivity toward ethylene formation, a desired reaction product. However, the stability of such tailored nanostructures under reaction conditions remains poorly understood. Here, using liquid cell transmission electron microscopy, we show the formation of cubic copper oxide particles from copper sulfate solutions during direct electrochemical synthesis and their subsequent morphological evolution in a carbon dioxide-saturated 0.1 M potassium bicarbonate solution under a reductive potential. Shape-selected synthesis of copper oxide cubes was achieved through: (1) the addition of chloride ions and (2) alternating the potentials within a narrow window where the deposited non-cubic particles dissolve, but cubic ones do not. Our results indicate that copper oxide cubes change their morphology rapidly under carbon dioxide electroreduction-relevant conditions, leading to an extensive re-structuring of the working electrode surface.

7.
ACS Energy Lett ; 4(6): 1484-1495, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31259247

ABSTRACT

The great dependence of the electrocatalytic activity of most electrochemical reactions on the catalytic surface area and specific surface structure is widely accepted. Building on the extensive knowledge already available on single-crystal surfaces, this Perspective discusses the recent progress made in low-temperature fuel cells through the use of the most active shape-controlled noble metal-based nanoparticles. In particular, we will focus on discussing structure-composition-reactivity correlations in methanol, ethanol, and formic acid oxidation reactions and will offer a general vision of future needs.

8.
J Am Chem Soc ; 140(10): 3791-3797, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29474073

ABSTRACT

Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt-Sn nanoparticles. The electrochemical activity of the cubic Pt-Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt-Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.

9.
Molecules ; 21(9)2016 Sep 12.
Article in English | MEDLINE | ID: mdl-27626404

ABSTRACT

PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR). In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison) and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1) materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS) and differential electrochemical mass spectrometry (DEMS) indicate that Sn diminishes the amount of bridge bonded CO (COB) and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.


Subject(s)
Carbon Monoxide/chemistry , Ethanol/chemistry , Platinum/chemistry , Tin/chemistry , Catalysis , Electrochemical Techniques , Oxidation-Reduction
10.
Phys Chem Chem Phys ; 15(37): 15416-25, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23936903

ABSTRACT

The oxygen reduction reaction (ORR) in 0.1 M NaOH on platinum single crystal electrodes has been studied using hanging meniscus rotating disk electrode configuration. Basal planes and stepped surfaces with (111) and (100) terraces have been employed. The results indicate that the Pt(111) electrode has the highest electrocatalytic activity among all the studied surfaces. The addition of steps on this electrode surface significantly diminishes the reactivity of the surface towards the ORR. In fact, the reactivity of the steps on the surfaces with wide terraces can be considered negligible with respect to that measured for the terrace. On the other hand, Pt(100) and Pt(110) electrodes have much lower activity than the Pt(111) electrode. These results have been compared with those obtained in acid media to understand the effect of the pH and the adsorbed OH on the mechanism. It is proposed that the surface covered by adsorbed OH is active for the reduction of the oxygen molecules.

11.
Beilstein J Nanotechnol ; 4: 956-67, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24455454

ABSTRACT

The oxygen reduction reaction (ORR) is a pivotal process in electrochemistry. Unfortunately, after decades of intensive research, a fundamental knowledge about its reaction mechanism is still lacking. In this paper, a global and critical view on the most important experimental and theoretical results regarding the ORR on Pt(111) and its vicinal surfaces, in both acidic and alkaline media, is taken. Phenomena such as the ORR surface structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic reaction models, which are deducted from reliable experimental results that need to be carefully taken under strict working conditions is shown. Therefore, progress in the understanding of this important reaction on a molecular level, and the choice of the right approach for the design of the electrocatalysts for fuel-cell cathodes is only possible through a cooperative approach between theory and experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...