Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27871, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533018

ABSTRACT

Methyl orange (MO) is commonly used in the textile dyeing industry, posing serious health and environmental hazards due to its carcinogenic, mutagenic properties, and potential for bioaccumulation. Appropriate handling is needed to solve these problems by harnessing the capacity of living microorganisms and the adsorption properties of bentonite clay minerals. Although the conventional approach predominantly depends on free cells, recent study has developed other methods such as immobilization techniques. Therefore, this study aimed to investigate the efficiency of the immobilization matrix comprising sodium alginate (SA), polyvinyl alcohol (PVA), and bentonite by modifying Pseudomonas aeruginosa, Bacillus subtilis, and Ralstonia pickettii for MO removal of 50 mg/L. In the free cell technique, the results showed that the MO decreased to 43.13, 36.61, and 27.45% for each of the bacteria within 10 days at 35 °C. The bacterial immobilization technique, including live immobilized P. aeruginosa (LIPa), live immobilized B. subtilis (LIBs), and live immobilized R. pickettii (LIRp) beads also demonstrated significant efficiency, achieving MO removal rates up to 97.15, 95.65, and 66.63% within 10 days. These synthesized beads showed reusability, with LIPa, LIBs, and LIRp being used up to 4, 4, and 2 cycles, respectively. The external and internal surface conditions were observed using SEM instrument and the results showed that all components were agglomerated. Comparisons using dead bacterial biomass indicated that treatment with live bacteria consistently yielded significantly higher removal rates. These results showed the effectiveness of immobilized bacteria in MO removal, offering a promising potential in reducing pollutants.

2.
RSC Adv ; 14(8): 5061-5068, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332787

ABSTRACT

This study aimed to examine biodecolorization and biotransformation of methylene blue (MB) using mixed cultures of brown-rot fungus Daedalea dickinsii and filamentous fungus Aspergillus oryzae. In addition, the ratio of D. dickinsii and A. oryzae in mixed cultures was 1 : 1, and the sample was incubated at 30 °C for 7 days in liquid medium potato dextrose broth (PDB). The results showed that the sample had the ability to remove and transform 95.24 mg L-1 MB. In this study, mixed cultures had the highest removal percentage of 64.77%, while values of 5.94% and 36.82% were obtained for single cultures of D. dickinsii and A. oryzae, respectively. LC-TOF/MS analysis results showed that peak intensity of MB compound (m/z 284) in each treatment chromatogram decreased compared to the control. The metabolites of decolorization by D. dickinsii were C15H16N3S, C16H19N3SO, and C16H21N3SO, while C31H48N3S+ was obtained using A. oryzae. For mixed cultures, the metabolites obtained included C26H37N2O3S, C9H8N2O3S, C28H38NO2S, and C27H27N5S2. Based on the results, mixed cultures of D. dickinsii and A. oryzae had a high MB decolorization and could be used in the textile industry.

3.
RSC Adv ; 13(31): 21163-21170, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37456549

ABSTRACT

Oil spills that contaminate the environment can harm the surrounding ecosystem. The oil contains petroleum hydrocarbon which is toxic to the environment hence it needs to be removed. The use of bacteria as remediation media was modified by immobilizing into a matrix hence the bacteria can survive in harsh conditions. In this research, the ability of biosurfactant-producing bacteria (Pseudomonas aeruginosa, Bacillus subtilis, and Ralstonia pickettii) immobilized in the PVA/SA/bentonite matrix was tested in remediation on oil-contaminated soil. The immobilized beads filled with bacteria were added to the original soil sample, as well as washed soil. The beads were characterized by using FTIR and SEM. Based on FTIR analysis, the PVA/SA/bentonite@bacteria beads had similar functional groups compared to each other. SEM analysis showed that the beads had non-smooth structure, while the bacteria were spread outside and agglomerated. Furthermore, GC-MS analysis results showed that immobilized B. subtilis and R. pickettii completely degraded tetratriacontane and heneicosane, respectively. Meanwhile, after soil washing pre-treatment, immobilized bacteria could completely degrade octadecane (P. aeruginosa and R. pickettii) and tetratriacontane (P. aeruginosa and B. subtilis). Based on those results, immobilized bacteria could degrade oil compounds. The degradation result was influenced by the enzymes produced, the ability of the bacteria, the suitability of the test media, and the matrix used. Therefore, this study can be a reference for further soil remediation using eco-friendly methods.

4.
Heliyon ; 9(7): e18216, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519755

ABSTRACT

DDT (1,1,1-trichloro-2,2 bis(4-chlorophenyl) ethane) is a synthetic insecticide that has several negative effects on the environment and humans. Therefore, determining an effective method to reduce DDT may give a beneficial impact. Brown-rot fungus, Gloeophyllum trabeum, is well known to have the ability to degrade DDT, even though it might require long-term remediation. In this study, the effect of the addition of bacteria on the biodegradation of DDT by G. trabeum had been investigated. Bacillus subtilis, Pseudomonas aeruginosa, and Ralstonia pickettii were screened for the bacteria which the volume of bacteria at 1, 3, 5, and 10 mL and the time range of addition of bacteria on days 0, 1, 3, and 5. The addition of B. subtilis, P. aeruginosa, and R. pickettii bacteria into the G. trabeum culture increased DDT biodegradation to approximately 62.02; 74.66; and 75.72%, respectively, in which G. trabeum was only able to degrade DDT by 54.52% for 7 days of incubation. R. pickettii enhanced the degradation process, in which the addition of 10 mL of this bacterium at day 1 possessed the highest value of 92.41% within 7 days of incubation. DDD was detected to be a product metabolite through a dechlorination reaction. This study indicated that mixed cultures of G. trabeum and R. pickettii can be used to degrade DDT.

5.
Heliyon ; 8(2): e08963, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35243083

ABSTRACT

Methylene blue (MB) is one of synthetic dyes that is used in the textile industry which is difficult to degrade in nature. Previously, the brown-rot fungus (BRF) Daedalea dickinsii had shown a good ability to degrade MB, however, the decolorization ability was relatively still low and had a long period of incubation. Therefore, improvement of process is needed to increase the ability of D. dickinsii to decolorize MB. In this study, the effect of Ralstonia pickettii bacterium addition on MB biodecolorization by the BRF D. dickinsii in potato dextrose broth (PDB) medium was investigated. The amount of R. picketti that was added to the culture of D. dickinsii were 2, 4, 6, 8, and 10 mL (1 mL ≈ 1.39 × 108 CFU). The cultures had ability to decolorize MB (100 mg/L) at 30 °C after 7 days incubation. The highest percentage of MB biodecolorization was obtained at addition of 10 mL of R. pickettii approximately 89%, while biodecolorization process by particularly D. dickinsii was approximately 17%. The MB degradation metabolites by mixed cultures of D. dickinsii and 10 mL of R. pickettii were Azure A, thionine, glucose-MB, C12H11N3SO6 and C12H13N3O6. This study indicated that the addition of R. pickettii could enhance MB biodecolorization by fungus D. dickinsii. Besides that, this study also indicated that mixed cultures of D. dickinsii and R. pickettii has great potential for high efficiency, fast and cheap dye wastewater treatment.

6.
Curr Microbiol ; 78(2): 668-678, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33398445

ABSTRACT

The residue of organochlorine pesticides (OCPs) has been a major pollution problem in our environment. Dichlorodiphenyltrichloroethane (DDT) is one of the most common persistent OCPs that continue to pose a serious risk to human health and the environment. Some treatment methods have been developed to reduce and minimize the adverse impacts of the use of DDT, including biodegradation with brown-rot fungi (BRF). However, DDT degradation using BRF has still low degradation rate and needs a long incubation time. Therefore, the ability of BRF need to be enhanced to degrade DDT. Interaction and effect of bacteria addition on biodegradation of DDT by brown-rot fungus Daedalea dickinsii were investigated. The interaction assay between D. dickinsii with bacteria addition showed that the addition of bacterium Pseudomonas aeruginosa did not provide resistance to the growth of D. dickinsii. Meanwhile, bacterium Bacillus subtilis addition has an inhibitory effect on the growth of D. dickinsii. The addition of 10 ml (1 ml = 1.05 × 109 CFU/ml bacteria cell) of P. aeruginosa and B. subtilis was able to improve DDT biodegradation by D. dickinsii from 53.61% to 96.70% and 67.60%, respectively. The highest biodegradation capability of DDT was obtained through addition of 10 ml of P. aeruginosa into the D. dickinsii culture in which the mixed cultures produce final metabolites of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU). This study indicated that the addition of P. aeruginosa can be used for optimization of DDT biodegradation by D. dickinsii.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Biodegradation, Environmental , DDT , Humans , Polyporales
7.
World J Microbiol Biotechnol ; 33(5): 92, 2017 May.
Article in English | MEDLINE | ID: mdl-28391562

ABSTRACT

The ability of Daedalea dickinsii to decolorize and transform methylene blue (MB) dye was investigated. MB was decolorized in potato dextrose agar medium after adding MB at concentrations of 50, 75, and 100 mg L-1. D. dickinsii decolorized MB with decolorization index values of 0.92, 0.90, and 0.88 at MB concentrations of 50, 75, and 100 mg L-1, respectively. The 100 mg L1 MB concentration was selected for biotransformation in liquid potato dextrose broth medium. D. dickinsii transformed approximately 54% of the MB after a 14-day incubation. 3-(Dimethylamino)-7-(methylamino) phenothiazine (C15H16N3S), 3,7-bis(dimethylamino)-4aH-phenothiazin-5-one (C16H19N3SO), and 4-(dimethylamino)-2-[m(dimethylamino) phenylsulfinyl] benzenamine (C16H21N3SO) were detected as MB metabolic products. This is the first report of MB transformation by the brown-rot fungi D. dickinsii. These results indicate that D. dickinsii can be used to decolorize and biotransform MB dye.


Subject(s)
Coriolaceae/physiology , Methylene Blue/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...