Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(14): 22187-22197, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38403826

ABSTRACT

The study focused on the efficacious performance of bimetallic Fe-Zn loaded 3A zeolite in catalytic ozonation for the degradation of highly toxic veterinary antibiotic enrofloxacin in wastewater of the pharmaceutical industry. Batch experiments were conducted in a glass reactor containing a submerged pump holding catalyst pellets at suction. The submerged pump provided the agitation and recirculation across the solution for effective contact with the catalyst. The effect of ozone flow (0.8-1.55 mg/min) and catalyst dose (5-15 g/L) on the enrofloxacin degradation and removal of other conventional pollutants COD, BOD5, turbidity was studied. In batch experiments, 10 g of Fe-Zn 3A zeolite efficiently removed 92% of enrofloxacin, 77% of COD, 69% BOD5, and 61% turbidity in 1 L sample of pharmaceutical wastewater in 30 min at 1.1 mg/min of O3 flow. The catalytic performance of Fe-Zn 3A zeolite notably exceeded the removal efficiencies of 52%, 51%, 52%, and 59% for enrofloxacin, COD, BOD5, and turbidity, respectively, achieved with single ozonation process. Furthermore, an increase in the biodegradability of treated pharmaceutical industrial wastewater was observed and made biodegradable easily for subsequent treatment.


Subject(s)
Ozone , Veterinary Drugs , Water Pollutants, Chemical , Water Purification , Zeolites , Wastewater , Enrofloxacin , Water Pollutants, Chemical/analysis
2.
J Environ Manage ; 323: 115977, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36113296

ABSTRACT

Textile wastewater is ranked highly contaminated among all industrial waste. During textile processing, the consumption of dyes and complex chemicals at various stages makes textile industrial wastewater highly challenging. Therefore, conventional processes based on single-unit treatment may not be sufficient to comply with the environmental quality discharge standards and more stringent guidelines for zero discharge of hazardous chemicals (ZDHC). In this study, a novel approach was followed by recycling Poly aluminum chloride (PACl) and Alum as a catalyst for the first time in the catalytic ozonation treatment process leading to a nascent method after using them as a coagulant in Coagulation/Flocculation. In the current investigation, six different combinations were studied to remove turbidity, TSS, COD, BOD5, color, and biodegradability (BOD5/COD ratios) of wastewater. Moreover, Central Composite Design was implied using RSM in Minitab software. During the combination of treatment processes, it was found that the pre-coagulation/flocculation with coagulant PACl followed by post-catalytic ozonation with recycled PACl, a more effective treatment than others. The optimum R.E of turbidity, TSS, COD, and color were 84%, 86%, 89%, and 98%, respectively. Moreover, a decrease in toxicity and increase in biodegradability (BOD5/COD ratio from 0.29 to 0.54) was observed as well. The electrical energy demand and operational costs of treatment processes were estimated and compared with other treatment processes.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Alum Compounds , Aluminum Chloride , Coloring Agents , Flocculation , Hazardous Substances , Industrial Waste , Textiles , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...