Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(7): 1867-1874, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38487919

ABSTRACT

Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidics/methods , Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Translational Research, Biomedical
2.
PLoS One ; 14(3): e0213433, 2019.
Article in English | MEDLINE | ID: mdl-30921343

ABSTRACT

Low-rank representation-based frameworks are becoming popular for the saliency and the object detection because of their easiness and simplicity. These frameworks only need global features to extract the salient objects while the local features are compromised. To deal with this issue, we regularize the low-rank representation through a local graph-regularization and a maximum mean-discrepancy regularization terms. Firstly, we introduce a novel feature space that is extracted by combining the four feature spaces like CIELab, RGB, HOG and LBP. Secondly, we combine a boundary metric, a candidate objectness metric and a candidate distance metric to compute the low-level saliency map. Thirdly, we extract salient and non-salient dictionaries from the low-level saliency. Finally, we regularize the low-rank representation through the Laplacian regularization term that saves the structural and geometrical features and using the mean discrepancy term that reduces the distribution divergence and connections among similar regions. The proposed model is tested against seven latest salient region detection methods using the precision-recall curve, receiver operating characteristics curve, F-measure and mean absolute error. The proposed model remains persistent in all the tests and outperformed against the selected models with higher precision value.


Subject(s)
Image Processing, Computer-Assisted/methods , Algorithms , Databases, Factual , Dictionaries as Topic , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Machine Learning , Neural Networks, Computer , Photography , Visual Perception
3.
Sci Rep ; 8(1): 11067, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038419

ABSTRACT

Breast cancer screening and early stage diagnosis is typically performed by X-ray mammography, which detects microcalcifications. Despite being one of the most reliable features of nonpalpable breast cancer, the processes by which these microcalcifications form are understudied and largely unknown. In the current work, we have investigated the genetic drivers for the formation of microcalcifications in breast cancer cell lines, and have investigated their involvement in disease progression. We have shown that stable silencing of the Osteopontin (OPN) gene decreased the formation of hydroxyapatite in MDA-MB-231 breast cancer cells in response to osteogenic cocktail. In addition, OPN silencing reduced breast cancer cell migration. Furthermore, breast cancer cells that had spontaneously metastasized to the lungs in a mouse model of breast cancer had largely elevated OPN levels, while circulating tumor cells in the same mouse model contained intermediately increased OPN levels as compared to parental cells. The observed dual roles of the OPN gene reveal the existence of a direct relationship between calcium deposition and the ability of breast cancer cells to metastasize to distant organs, mediated by common genetic factors.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Calcinosis/metabolism , Calcinosis/pathology , Osteopontin/metabolism , Animals , Breast Neoplasms/genetics , Calcinosis/genetics , Cell Line, Tumor , Female , Humans , Mice , Neoplasm Metastasis/genetics , Osteopontin/genetics , RNA, Small Interfering/genetics
4.
Neoplasia ; 19(8): 617-627, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28654865

ABSTRACT

Abnormal choline phospholipid metabolism is a hallmark of cancer. The magnetic resonance spectroscopy (MRS) detected total choline (tCho) signal can serve as an early noninvasive imaging biomarker of chemotherapy response in breast cancer. We have quantified the individual components of the tCho signal, glycerophosphocholine (GPC), phosphocholine (PC) and free choline (Cho), before and after treatment with the commonly used chemotherapeutic drug doxorubicin in weakly metastatic human MCF7 and triple-negative human MDA-MB-231 breast cancer cells. While the tCho concentration did not change following doxorubicin treatment, GPC significantly increased and PC decreased. Of the two phosphatidylcholine-specific PLD enzymes, only PLD1, but not PLD2, mRNA was down-regulated by doxorubicin treatment. For the two reported genes encoding GPC phosphodiesterase, the mRNA of GDPD6, but not GDPD5, decreased following doxorubicin treatment. mRNA levels of choline kinase α (ChKα), which converts Cho to PC, were reduced following doxorubicin treatment. PLD1 and ChKα protein levels decreased following doxorubicin treatment in a concentration dependent manner. Treatment with the PLD1 specific inhibitor VU0155069 sensitized MCF7 and MDA-MB-231 breast cancer cells to doxorubicin-induced cytotoxicity. Low concentrations of 100 nM of doxorubicin increased MDA-MB-231 cell migration. GDPD6, but not PLD1 or ChKα, silencing by siRNA abolished doxorubicin-induced breast cancer cell migration. Doxorubicin induced GPC increase and PC decrease are caused by reductions in PLD1, GDPD6, and ChKα mRNA and protein expression. We have shown that silencing or inhibiting these genes/proteins can promote drug effectiveness and reduce adverse drug effects. Our findings emphasize the importance of detecting PC and GPC individually.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/metabolism , Choline/metabolism , Doxorubicin/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Choline Kinase/genetics , Choline Kinase/metabolism , Female , Gene Silencing , Humans , Metabolic Networks and Pathways/drug effects , Phospholipase D/genetics , Phospholipase D/metabolism , Phospholipases/genetics , Phospholipases/metabolism
5.
Cancer Res ; 77(2): 247-256, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28069800

ABSTRACT

Recent advances in animal modeling, imaging technology, and functional genomics have permitted precise molecular observations of the metastatic process. However, a comprehensive understanding of the premetastatic niche remains elusive, owing to the limited tools that can map subtle differences in molecular mediators in organ-specific microenvironments. Here, we report the ability to detect premetastatic changes in the lung microenvironment, in response to primary breast tumors, using a combination of metastatic mouse models, Raman spectroscopy, and multivariate analysis of consistent patterns in molecular expression. We used tdTomato fluorescent protein expressing MDA-MB-231 and MCF-7 cells of high and low metastatic potential, respectively, to grow orthotopic xenografts in athymic nude mice and allow spontaneous dissemination from the primary mammary fat pad tumor. Label-free Raman spectroscopic mapping was used to record the molecular content of premetastatic lungs. These measurements show reliable distinctions in vibrational features, characteristic of the collageneous stroma and its cross-linkers as well as proteoglycans, which uniquely identify the metastatic potential of the primary tumor by recapitulating the compositional changes in the lungs. Consistent with histological assessment and gene expression analysis, our study suggests that remodeling of the extracellular matrix components may present promising markers for objective recognition of the premetastatic niche, independent of conventional clinical information. Cancer Res; 77(2); 247-56. ©2016 AACR.


Subject(s)
Lung Neoplasms/secondary , Mammary Neoplasms, Animal/secondary , Neoplasm Metastasis/pathology , Precancerous Conditions/pathology , Spectrum Analysis, Raman/methods , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Signal Processing, Computer-Assisted , Tumor Microenvironment/physiology
7.
NMR Biomed ; 29(8): 1098-107, 2016 08.
Article in English | MEDLINE | ID: mdl-27356959

ABSTRACT

Abnormal choline phospholipid metabolism is associated with oncogenesis and tumor progression. We have investigated the effects of targeting choline phospholipid metabolism by silencing two glycerophosphodiesterase genes, GDPD5 and GDPD6, using small interfering RNA (siRNA) in two breast cancer cell lines, MCF-7 and MDA-MB-231. Treatment with GDPD5 and GDPD6 siRNA resulted in significant increases in glycerophosphocholine (GPC) levels, and no change in the levels of phosphocholine or free choline, which further supports their role as GPC-specific regulators in breast cancer. The GPC levels were increased more than twofold during GDPD6 silencing, and marginally increased during GDPD5 silencing. DNA laddering was negative in both cell lines treated with GDPD5 and GDPD6 siRNA, indicating absence of apoptosis. Treatment with GDPD5 siRNA caused a decrease in cell viability in MCF-7 cells, while GDPD6 siRNA treatment had no effect on cell viability in either cell line. Decreased cell migration and invasion were observed in MDA-MB-231 cells treated with GDPD5 or GDPD6 siRNA, where a more pronounced reduction in cell migration and invasion was observed under GDPD5 siRNA treatment as compared with GDPD6 siRNA treatment. In conclusion, GDPD6 silencing increased the GPC levels in breast cancer cells more profoundly than GDPD5 silencing, while the effects of GDPD5 silencing on cell viability/proliferation, migration, and invasion were more severe than those of GDPD6 silencing. Our results suggest that silencing GDPD5 and GDPD6 alone or in combination may have potential as a new molecular targeting strategy for breast cancer treatment. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Genetic Therapy/methods , Glycerylphosphorylcholine/metabolism , Molecular Targeted Therapy/methods , Phospholipases/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Silencing , Humans , MCF-7 Cells , Neoplasm Invasiveness , RNA, Small Interfering/administration & dosage , Treatment Outcome
8.
Anal Chem ; 88(6): 3107-14, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26891127

ABSTRACT

Although tumor hypoxia is associated with tumor aggressiveness and resistance to cancer treatment, many details of hypoxia-induced changes in tumors remain to be elucidated. Mass spectrometry imaging (MSI) is a technique that is well suited to study the biomolecular composition of specific tissue regions, such as hypoxic tumor regions. Here, we investigate the use of pimonidazole as an exogenous hypoxia marker for matrix-assisted laser desorption/ionization (MALDI) MSI. In hypoxic cells, pimonidazole is reduced and forms reactive products that bind to thiol groups in proteins, peptides, and amino acids. We show that a reductively activated pimonidazole metabolite can be imaged by MALDI-MSI in a breast tumor xenograft model. Immunohistochemical detection of pimonidazole adducts on adjacent tissue sections confirmed that this metabolite is localized to hypoxic tissue regions. We used this metabolite to image hypoxic tissue regions and their associated lipid and small molecule distributions with MALDI-MSI. We identified a heterogeneous distribution of 1-methylnicotinamide and acetylcarnitine, which mostly colocalized with hypoxic tumor regions. As pimonidazole is a widely used immunohistochemical marker of tissue hypoxia, it is likely that the presented direct MALDI-MSI approach is also applicable to other tissues from pimonidazole-injected animals or humans.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Nitroimidazoles/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Humans
9.
Sci Rep ; 5: 10002, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25950608

ABSTRACT

The most life-threatening aspect of breast cancer is the occurrence of metastatic disease. The tumor draining lymph nodes typically are the first sites of metastasis in breast cancer. Collagen I fibers and the extracellular matrix have been implicated in breast cancer to form avenues for metastasis. In this study, we have investigated extracellular matrix molecules such as collagen I fibers in the lymph nodes of mice bearing orthotopic human breast cancer xenografts. The lymph nodes in mice with metastatic MDA-MB-231 and SUM159 tumor xenografts and tumor xenografts grown from circulating tumor cell lines displayed an increased collagen I density compared to mice with no tumor and mice with non-metastatic T-47D and MCF-7 tumor xenografts. These results suggest that cancer cells that have metastasized to the lymph nodes can modify the extracellular matrix components of these lymph nodes. Clinically, collagen density in the lymph nodes may be a good marker for identifying lymph nodes that have been invaded by breast cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Collagen/metabolism , Lymph Nodes/metabolism , Lymph Nodes/pathology , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cluster Analysis , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Keratins/metabolism , Lymphatic Metastasis
10.
NPJ Breast Cancer ; 1: 15017, 2015.
Article in English | MEDLINE | ID: mdl-28721370

ABSTRACT

BACKGROUND: Although primary breast tumors are detected early in most cases, it is inevitable that many patients remain at risk for future recurrence and death due to micrometastases. We investigated interactions between the degradome and the adhesome that drive metastasis, and have focused on matrix metalloproteases (MMPs) within the degradome and integrins and E-cadherin within the adhesome. AIMS: The aim of this study is to identify interaction networks between adhesion molecules and degradative enzymes in breast cancer metastasis. METHODS: We compared non-metastatic (BT-474, T47D, MCF7) and metastatic (MDA-MB-231, SUM149, SUM159) human breast cancer cell lines and xenografts, in which we measured growth rate, migration, invasion, colony formation, protein expression, and enzyme activity in vitro and in vivo. RESULTS: The metastatic breast cancer lines and xenografts displayed higher expression and activity levels of MMPs, which was also confirmed by noninvasive imaging in vivo. These metastatic breast cancer models also displayed elevated heterophilic cell-extracellular matrix (ECM) and lower homophilic cell-cell adhesion compared with those of non-metastatic models. This was conferred by an increased expression of the heterophilic cell adhesion molecule integrin ß1 (ITGB1) and a decreased expression of the homophilic cell adhesion molecule E-cadherin. Inhibition of MMPs in metastatic cells led to a reduced expression of ITGB1, and stimulation of ITGB1 resulted in higher MMP activities in metastatic cancer cells, demonstrating reciprocal dependencies between degradome and adhesome. Re-expression of E-cadherin (CDH1) led to an increased expression of the precursor form of ITGB1. CONCLUSIONS: Our results point toward a concerted interdependence of MMPs, ITGB1, and CDH1 that is critical for breast cancer metastasis.

11.
Clin Cancer Res ; 19(18): 5158-69, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23833310

ABSTRACT

PURPOSE: To investigate the relationship between lactate dehydrogenase A (LDH-A) expression, lactate concentration, cell metabolism, and metastases in murine 4T1 breast tumors. EXPERIMENTAL DESIGN: Inhibition of LDH-A expression and protein levels were achieved in a metastatic breast cancer cell line (4T1) using short hairpin RNA (shRNA) technology. The relationship between tumor LDH-A protein levels and lactate concentration (measured by magnetic resonance spectroscopic imaging, MRSI) and metastases was assessed. RESULTS: LDH-A knockdown cells (KD9) showed a significant reduction in LDH-A protein and LDH activity, less acid production, decreased transwell migration and invasion, lower proliferation, reduced glucose consumption and glycolysis, and increase in oxygen consumption, reactive oxygen species (ROS), and cellular ATP levels, compared with control (NC) cells cultured in 25 mmol/L glucose. In vivo studies showed lower lactate levels in KD9, KD5, and KD317 tumors than in NC or 4T1 wild-type tumors (P < 0.01), and a linear relationship between tumor LDH-A protein expression and lactate concentration. Metastases were delayed and primary tumor growth rate decreased. CONCLUSIONS: We show for the first time that LDH-A knockdown inhibited the formation of metastases, and was accompanied by in vivo changes in tumor cell metabolism. Lactate MRSI can be used as a surrogate to monitor targeted inhibition of LDH-A in a preclinical setting and provides a noninvasive imaging strategy to monitor LDH-A-targeted therapy. This imaging strategy can be translated to the clinic to identify and monitor patients who are at high risk of developing metastatic disease.


Subject(s)
Breast Neoplasms/pathology , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Lung Neoplasms/secondary , Adenosine Triphosphate/metabolism , Animals , Breast Neoplasms/metabolism , Cell Adhesion , Cell Movement , Cell Proliferation , Female , Glucose/metabolism , Glycolysis , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5 , Lung Neoplasms/metabolism , Mice , Oxygen Consumption , RNA, Small Interfering/genetics , Reactive Oxygen Species , Tumor Cells, Cultured
12.
NMR Biomed ; 24(9): 1159-68, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21994185

ABSTRACT

The topoisomerase I inhibitor, irinotecan, and its active metabolite SN-38 have been shown to induce G(2) /M cell cycle arrest without significant cell death in human colon carcinoma cells (HCT-116). Subsequent treatment of these G(2) /M-arrested cells with the cyclin-dependent kinase inhibitor, flavopiridol, induced these cells to undergo apoptosis. The goal of this study was to develop a noninvasive metabolic biomarker for early tumor response and target inhibition of irinotecan followed by flavopiridol treatment in a longitudinal study. A total of eleven mice bearing HCT-116 xenografts were separated into two cohorts where one cohort was administered saline and the other treated with a sequential course of irinotecan followed by flavopiridol. Each mouse xenograft was longitudinally monitored with proton ((1) H)-decoupled phosphorus ((31) P) magnetic resonance spectroscopy (MRS) before and after treatment. A statistically significant decrease in phosphocholine (p = 0.0004) and inorganic phosphate (p = 0.0103) levels were observed in HCT-116 xenografts following treatment, which were evidenced within twenty-four hours of treatment completion. Also, a significant growth delay was found in treated xenografts. To discern the underlying mechanism for the treatment response of the xenografts, in vitro HCT-116 cell cultures were investigated with enzymatic assays, cell cycle analysis, and apoptotic assays. Flavopiridol had a direct effect on choline kinase as measured by a 67% reduction in the phosphorylation of choline to phosphocholine. Cells treated with SN-38 alone underwent 83 ± 5% G(2) /M cell cycle arrest compared to untreated cells. In cells, flavopiridol alone induced 5 ± 1% apoptosis while the sequential treatment (SN-38 then flavopiridol) resulted in 39 ± 10% apoptosis. In vivo (1) H-decoupled (31) P MRS indirectly measures choline kinase activity. The decrease in phosphocholine may be a potential indicator of early tumor response to the sequential treatment of irinotecan followed by flavopiridol in noninvasive and/or longitudinal studies.


Subject(s)
Colorectal Neoplasms/drug therapy , Magnetic Resonance Spectroscopy/methods , Protons , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Cycle/drug effects , Choline Kinase/isolation & purification , Choline Kinase/metabolism , Choline-Phosphate Cytidylyltransferase/metabolism , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , HCT116 Cells , Humans , Irinotecan , Mice , Phosphorus Isotopes , Piperidines/pharmacology , Piperidines/therapeutic use , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Treatment Outcome
13.
Clin Cancer Res ; 17(19): 6250-6261, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21844011

ABSTRACT

PURPOSE: We compared the metabolic profiles and the association between LDH-A expression and lactate production in two isogenic murine breast cancer cell lines and tumors (67NR and 4T1). These cell lines were derived from a single mammary tumor and have different growth and metabolic phenotypes. EXPERIMENTAL DESIGN: LDH-A expression, lactate concentration, glucose utilization, and oxygen consumption were measured in cells, and the potential relationship between tumor lactate levels [measured by magnetic resonance spectroscopic imaging (MRSI)] and tumor glucose utilization [measured by [(18)F]2-deoxy-2-fluoro-D-glucose positron emission tomography ([(18)F]FDG-PET)] was assessed in orthotopic breast tumors derived from these cell lines. RESULTS: We show a substantial difference in LDH-A expression between 67NR and 4T1 cells under normoxia and hypoxia. We also show that small orthotopic 4T1 tumors generate 10-fold more lactate than corresponding 67NR tumors. The high lactate levels in small primary 4T1 tumors are associated with intense pimonidazole staining (a hypoxia indicator). Less-intense hypoxia staining was observed in the larger 67NR tumors and is consistent with the gradual increase and plateau of lactate concentration in enlarging 67NR tumors. CONCLUSIONS: Lactate-MRSI has a greater dynamic range than [(18)F]FDG-PET and may be a more sensitive measure with which to evaluate the aggressive and metastatic potential of primary breast tumors.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Mammary Neoplasms, Animal/metabolism , Animals , Cell Line, Tumor , Female , Glucose/metabolism , Isoenzymes/metabolism , Lactate Dehydrogenase 5 , Mammary Neoplasms, Animal/pathology , Mice , Mice, Nude , Neoplasm Transplantation , Phenotype , RNA, Messenger/metabolism
14.
Neoplasia ; 11(3): 247-59, 2p following 259, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19242606

ABSTRACT

In vivo knowledge of the spatial distribution of viable, necrotic, and hypoxic areas can provide prognostic information about the risk of developing metastases and regional radiation sensitivity and may be used potentially for localized dose escalation in radiation treatment. In this study, multimodality in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging using stereotactic fiduciary markers in the Dunning R3327-AT prostate tumor were performed, focusing on the relationship between dynamic contrast-enhanced (DCE) MRI using Magnevist (Gd-DTPA) and dynamic (18)F-fluoromisonidazole ((18)F-Fmiso) PET. The noninvasive measurements were verified using tumor tissue sections stained for hematoxylin/eosin and pimonidazole. To further validate the relationship between (18)F-Fmiso and pimonidazole uptake, (18)F digital autoradiography was performed on a selected tumor and compared with the corresponding pimonidazole-stained slices. The comparison of Akep values (kep = rate constant of movement of Gd-DTPA between the interstitial space and plasma and A = amplitude in the two-compartment model (Hoffmann U, Brix G, Knopp MV, Hess T and Lorenz WJ (1995). Magn Reson Med 33, 506-514) derived from DCE-MRI studies and from early (18)F-Fmiso uptake PET studies showed that tumor vasculature is a major determinant of early (18)F-Fmiso uptake. A negative correlation between the spatial map of Akep and the slope map of late (last 1 hour of the dynamic PET scan) (18)F-Fmiso uptake was observed. The relationships between DCE-MRI and hematoxylin/eosin slices and between (18)F-Fmiso PET and pimonidazole slices confirm the validity of MRI/PET measurements to image the tumor microenvironment and to identify regions of tumor necrosis, hypoxia, and well-perfused tissue.


Subject(s)
Cell Hypoxia , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Prostatic Neoplasms/pathology , Animals , Autoradiography , Disease Models, Animal , Image Processing, Computer-Assisted , Male , Misonidazole/analogs & derivatives , Nitroimidazoles , Radiopharmaceuticals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...