Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(3): 103431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295501

ABSTRACT

Infectious bursal disease (IBD) is a viral disease that affects the ability of chickens to produce humoral immune responses. One way to prevent the disease is the passage of maternally derived antibodies (MDA) from dams to offsprings via the yolk. Despite sanitary measures, which include immunization with genogroup 1 (G1) vaccines, infections with IBDV genogroup 4 (G4) in young animals have been detected. The aim of this study was to determine whether a local IBDV isolate belonging to G4 could evade the immunity generated by MDAs. Twelve-day-old animals positive for MDA, were inoculated with G1 or G4 isolates or phosphate buffered saline (PBS) as a control. After 1 wk, the animals were sacrificed and the following parameters were evaluated: bursa-body (BB) ratio, viral load, and histologic damage in the bursa of Fabricius. Results showed that G4-infected animals had significant differences in the BB ratio compared to the PBS group. In addition, viral load was significantly higher in the G4 group than in the G1 group. Histologic damage in the bursa of Fabricius was detected only in G4-infected MDA chickens. Our results suggest that infection with G4 local isolate can circumvent the immunity generated by MDA and, furthermore, that G4 isolate does not differ in its pathogenicity from G1 isolate, which underlines the need to include variant strains in vaccine formulations to reduce potential losses caused by these viruses.


Subject(s)
3,4-Methylenedioxyamphetamine , Infectious bursal disease virus , Animals , Chickens , Antibodies , Immunization/veterinary
2.
Proc Natl Acad Sci U S A ; 111(11): 4209-14, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591625

ABSTRACT

We have previously shown that C1q is expressed on endothelial cells (ECs) of newly formed decidual tissue. Here we demonstrate that C1q is deposited in wound-healing skin in the absence of C4 and C3 and that C1q mRNA is locally expressed as revealed by real-time PCR and in situ hybridization. C1q was found to induce permeability of the EC monolayer, to stimulate EC proliferation and migration, and to promote tube formation and sprouting of new vessels in a rat aortic ring assay. Using a murine model of wound healing we observed that vessel formation was defective in C1qa(-/-) mice and was restored to normal after local application of C1q. The mean vessel density of wound-healing tissue and the healed wound area were significantly increased in C1q-treated rats. On the basis of these results we suggest that C1q may represent a valuable therapeutic agent that can be used to treat chronic ulcers or other pathological conditions in which angiogenesis is impaired, such as myocardial ischemia.


Subject(s)
Complement C1q/physiology , Endothelial Cells/drug effects , Neovascularization, Physiologic/genetics , Wound Healing/genetics , Animals , Cell Proliferation/drug effects , Complement C1q/genetics , Complement C1q/pharmacology , DNA Primers/genetics , Endothelial Cells/physiology , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells , Humans , Immunoblotting , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic/physiology , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Wound Healing/physiology
3.
Rheumatology (Oxford) ; 48(3): 293-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19168833

ABSTRACT

OBJECTIVE: Complement activation products contribute to a large number of inflammatory diseases, including RA. We have investigated whether osteoprotegerin (OPG) may concur with the soluble terminal complement complex (SC5b-9) to the inflammatory cascade characterizing RA. METHODS: Levels of SC5b-9 and OPG in the plasma and SF of patients with active RA were determined by ELISA. The presence of SC5b-9 and OPG in RA synovial lesions was analysed by immunohistochemistry. Cultured endothelial cells were used for in vitro leucocyte/endothelial cell adhesion assays. In addition, endothelial cells were exposed to SC5b-9 in order to evaluate the effects on the production of OPG protein, as well as the activation of the OPG promoter. RESULTS: Patients affected by active RA are characterized by elevated levels of both SC5b-9 and OPG in plasma and/or SF. Of note, we have observed a co-localization of SC5b-9 and OPG in endothelial cells of post-capillary venules of RA synovial lesions. Data on endothelial cell cultures showed that exposure to SC5b-9 induced the up-regulation of OPG expression/release, stimulating the transcriptional activity of the OPG promoter, and synergized with TNF-alpha in up-regulating OPG production. CONCLUSIONS: Our findings demonstrate that SC5b-9 induces OPG production by endothelial cells and we propose that the SC5b-9-mediated up-regulation of OPG may be an important mechanism whereby complement contributes in promoting and/or enhancing the inflammation in RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Complement Membrane Attack Complex/physiology , Endothelial Cells/metabolism , Osteoprotegerin/biosynthesis , Adult , Aged , Cell Adhesion/physiology , Cells, Cultured , Complement Membrane Attack Complex/pharmacology , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelium, Vascular/metabolism , Female , Humans , Male , Middle Aged , Neutrophil Infiltration/physiology , Neutrophils/physiology , Synovial Membrane/metabolism , Up-Regulation/drug effects
4.
Blood ; 113(15): 3640-8, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19179470

ABSTRACT

We describe a novel localization of C7 as a membrane-bound molecule on endothelial cells (ECs). Data obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot analysis, Northern blot analysis, and mass spectrometry revealed that membrane-associated C7 (mC7) was indistinguishable from soluble C7 and was associated with vimentin on the cell surface. mC7 interacted with the other late complement components to form membrane-bound TCC (mTCC). Unlike the soluble SC5b-9, mTCC failed to stimulate ECs to express adhesion molecules, to secrete IL-8, and to induce albumin leakage through a monolayer of ECs, and more importantly protected ECs from the proinflammatory effect of SC5b-9. Our data disclose the possibility of a novel role of mC7 that acts as a trap for the late complement components to control excessive inflammation induced by SC5b-9.


Subject(s)
Complement C7/immunology , Complement C7/metabolism , Complement Membrane Attack Complex/metabolism , Endothelial Cells/immunology , Vasculitis/immunology , Vasculitis/metabolism , Cells, Cultured , Complement C7/genetics , Complement Membrane Attack Complex/immunology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Interleukin-8/immunology , Interleukin-8/metabolism , Membrane Proteins/immunology , Membrane Proteins/metabolism , Proteomics , RNA, Messenger/metabolism , Umbilical Veins/cytology , Vimentin/metabolism
5.
Mol Immunol ; 45(9): 2629-40, 2008 May.
Article in English | MEDLINE | ID: mdl-18295334

ABSTRACT

This study was prompted by the observation that decidual endothelial cells (DECs), unlike endothelial cells (ECs) of blood vessels in normal skin, kidney glomeruli and brain, express surface-bound C1q in physiologic pregnancy. This finding was unexpected, because deposits of C1q are usually observed in pathologic conditions and are associated with complement activation. In the case of DECs, we failed to detect immunoglobulins and C4 co-localized with C1q on the cell surface. Surprisingly, DECs expressed mRNA for the three chains of C1q and secreted detectable level of this component in serum-free medium. The ability to synthesize C1q is acquired by DECs during pregnancy and is not shared by ECs obtained from endometrium and from other sources. Cell-associated C1q has a molecular weight similar to that of secreted C1q and is released from DECs following treatment with heparinase or incubation at low pH. This suggests that C1q binds to DECs and it is not constitutively expressed on the cell surface. C1q is localized at contact sites between endovascular trophoblast and DECs and acts as an intercellular molecular bridge because adhesion of endovascular trophoblast to DECs was inhibited by antibodies to C1q and to a receptor recognizing its globular portion expressed on trophoblast.


Subject(s)
Blood Vessels/cytology , Complement C1q/metabolism , Decidua/immunology , Endothelial Cells/immunology , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Trophoblasts/physiology , Blood Vessels/embryology , Blood Vessels/immunology , Blood Vessels/metabolism , Cell Adhesion , Complement C1q/immunology , Decidua/cytology , Decidua/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Humans , Membrane Glycoproteins/immunology , Pregnancy , Receptors, Complement/immunology , Trophoblasts/cytology , Trophoblasts/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...