Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(2): 261, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36598707

ABSTRACT

Coastal zones support the most productive marine ecosystems, yet they are increasingly threatened by anthropogenic stressors such as dredging. In this study, we investigated how seasonal variation and dredging activities conducted during the construction of a harbor and submarine base (Sepetiba Bay, RJ, Brazil) affected the phytoplankton and zooplankton assemblages. The observed temporal variability at five different sites over 10 years revealed that dredging exceeds the expected influence of dry and rainy seasons on plankton abundance and diversity. In general, the abundance of both groups increased during dredging due to the resuspension of nutrients and benthic organisms. This increase was particularly evident in the dinoflagellate Scrippsiellaa cuminata, the diatoms Thalassiosira rotula and Nitzschia longissima, and the herbivorous zooplankton Acartia clausii and Pseudevadne tergestina. Moreover, season and dredging activities synergistically influenced plankton assemblages, resulting in larger seasonal variations during dredging activities. After the end of the harbor construction, plankton abundance decreased and remained low until the end of the monitoring, which may indicate persistent changes in the biodiversity and ecosystem functioning of impacted areas.


Subject(s)
Diatoms , Plankton , Animals , Seasons , Ecosystem , Environmental Monitoring , Phytoplankton , Zooplankton
2.
Mar Pollut Bull ; 115(1-2): 362-368, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28003055

ABSTRACT

The study of the uptake and distribution of elements in marine environments is of great interest for understanding their pathways and accumulation. Here, we investigated in laboratory experiments the accumulation behavior of Cd in the sea anemone Bunodosoma caissarum and the mussel Perna perna. Specimens were incubated with isotopically enriched 116Cd in aquariums. Cd concentrations in the seawater and in the tissues of B. caissarum and P. perna were followed by inductively coupled plasma-mass spectrometry (ICP-MS) by means of isotope dilution analysis. Bioconcentration factors for B. caissarum and P. perna exposed to 0.9µg·L-1 of 116Cd were determined to be 80.5 and 850, respectively. P. perna specimens exposed to 4.5µg·L-1 of 116Cd reached 530. Cytosolic proteins associated with Cd from the tissues were extracted and further analyzed by size-exclusion chromatography coupled to ICP-MS. Cd accumulation could be detected in both organisms ranging from high-molecular to low-molecular species.


Subject(s)
Cadmium/metabolism , Perna/metabolism , Sea Anemones/metabolism , Animals , Mass Spectrometry , Seawater
3.
Environ Monit Assess ; 188(12): 679, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27864775

ABSTRACT

Total mercury concentrations in the mussel Perna perna and the sea anemone Bunodosoma caissarum were determined to assess Hg contamination in Guanabara Bay, Rio de Janeiro, Brazil, and an adjacent sea area. Concentrations in the tissues of these species were compared. Average total mercury concentrations ranged from 3.54 to 21.01 µg kg-1 (wet wt.) in P. perna and from 4.51 to 23.19 µg kg-1 (wet wt.) for B. caissarum. Concentrations varied according to the sampling stations. Distribution of concentrations for both species was similar along the sampling stations, and a significant correlation was observed. Results suggest that B. caissarum could be a suitable biomonitor species for mercury contamination in the study area and could be used as a complementary species for monitoring studies. Further research is, however, needed to assess how environmental conditions and other variables affect Hg concentrations in B. caissarum.


Subject(s)
Mercury/analysis , Perna/chemistry , Sea Anemones/chemistry , Water Pollutants, Chemical/analysis , Animals , Brazil , Environmental Monitoring
4.
Mar Pollut Bull ; 92(1-2): 105-112, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25599628

ABSTRACT

Mercury (Hg) has a complex biogeochemical cycle in aquatic environments. Its most toxic form, methylmercury (MeHg), is produced by microorganisms. This study investigated how the sea anemone Bunodosoma caissarum affects Hg distribution, methylation and volatilization in laboratory model systems. (203)Hg was added to microcosms and its distribution in seawater, specimens and air was periodically measured by gamma spectrometry. MeHg was measured by liquid scintillation. After the uptake period, specimens had a bioconcentration factor of 70 and in microcosms with and without B. caissarum, respectively 0.05% and 0.32% of the initial spike was found as MeHg. After depuration, MeHg in specimens ranged from 0.2% to 2.4% of total Hg. Microcosms with B. caissarum had higher Hg volatilization (58%) than controls (17%), possibly due to Hg(2+) reduction mediated by microorganisms associated with its tissues and mucus secretions. Marine organisms and their associated microbiota may play a role in Hg and MeHg cycling.


Subject(s)
Aquatic Organisms/metabolism , Mercury/chemistry , Sea Anemones/metabolism , Seawater/chemistry , Animals , Mercury/analysis , Mercury/metabolism , Methylation , Methylmercury Compounds/analysis , Models, Theoretical , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...