Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Dis ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39012674

ABSTRACT

APOE ε4 allele is the major genetic risk factor for Alzheimer's Disease (AD). Furthermore, APOE methylation pattern has been described to be associated with the disease and to follow a bimodal pattern, with a hypermethylated CpG island and a hypomethylated promoter region. However, little is known about the methylation levels in the APOE 5'UTR region. Here, the methylation of two regions (R1 and R2) within APOE 5'UTR was investigated in both peripheral blood mononuclear cells (PBMCs) and hippocampus (HIC) samples to identify differentially methylated CpG sites and to associate clinical, genetic features and cerebrospinal fluid (CSF) biomarkers levels. DNA was extracted from PBMCs of 20 AD and 20 healthy controls (HC) and from 6 AD and 3 HC HIC samples. The methylation analysis was carried out by means of pyrosequencing. In AD PBMCs we found that R1 region displayed a higher methylation level, while the opposite trend was observed in R2. The presence of ε4 allele highlighted a marked increase in R1 methylation level and a decrease in R2. In AD PBMCs and HIC, age progression resulted to be associated with an increase in the methylation level of R1. Lastly, the methylation of a CpG site in R2 was found to be related to CSF biomarkers. Despite the lack of a statistical significance, the outcome from this exploratory analysis highlighted the presence of a difference in methylation in APOE 5'UTR in PBMCs of AD patients which seemed to be associated also with APOE genotype, age and CSF biomarkers level.

2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473944

ABSTRACT

Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Oxidative Stress/physiology , Antioxidants/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Inflammation/drug therapy
3.
Front Endocrinol (Lausanne) ; 14: 1152237, 2023.
Article in English | MEDLINE | ID: mdl-36998476

ABSTRACT

Introduction: Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy with early onset that can be transmitted in both dominant and recessive forms. Its phenotypic covers a wide range of neurological and extraneurological symptoms. Nine genes that are all involved in nucleic acids (NAs) metabolism or signaling have so far been linked to the AGS phenotype. Recently, a link between autoimmune or neurodegenerative conditions and mitochondrial dysfunctions has been found. As part of the intricate system of epigenetic control, the mtDNA goes through various alterations. The displacement (D-loop) region represents one of the most methylated sites in the mtDNA. The term "mitoepigenetics" has been introduced as a result of increasing data suggesting that epigenetic processes may play a critical role in the control of mtDNA transcription and replication. Since we showed that RNASEH2B and RNASEH2A-mutated Lymphoblastoid Cell Lines (LCLs) derived from AGS patients had mitochondrial alterations, highlighting changes in the mtDNA content, the main objective of this study was to examine any potential methylation changes in the D-loop regulatory region of mitochondria and their relationship to the mtDNA copy number in peripheral blood cells of AGS patients with mutations in various AGS genes and healthy controls. Materials and methods: We collected blood samples from 25 AGS patients and we performed RT-qPCR to assess the mtDNA copy number and pyrosequencing to measure DNA methylation levels in the D-loop region. Results: Comparing AGS patients to healthy controls, D-loop methylation levels and mtDNA copy number increased significantly. We also observed that in AGS patients, the mtDNA copy number increased with age at sampling, but not the D-loop methylation levels, and there was no relationship between sex and mtDNA copy number. In addition, the D-loop methylation levels and mtDNA copy number in the AGS group showed a non-statistically significant positive relation. Conclusion: These findings, which contradict the evidence for an inverse relationship between D-loop methylation levels and mtDNA copy number, show that AGS patients have higher D-loop methylation levels than healthy control subjects. Additional research is needed to identify the function of these features in the etiology and course of AGS.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , DNA, Mitochondrial/genetics , Mitochondria/genetics , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...