Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 77(4): 697-709, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25627240

ABSTRACT

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease whose pathophysiological deficits, causing impairment in motor function, are largely unknown. Here we propose that hydrogen sulfide (H2 S), as a glial-released inflammatory factor, contributes to ALS-mediated motor neuron death. METHODS: H2 S concentrations were analyzed in the cerebrospinal fluid of 37 sporadic ALS patients and 14 age- and gender-matched controls, in tissues of a familial ALS (fALS) mouse model, and in spinal cord culture media by means of a specific and innovative high-performance liquid chromatography method. The effects of H2 S on motor neurons cultures was analyzed immunohistochemically and by patch clamp recordings and microfluorometry. RESULTS: We found a significantly high level of H2 S in the spinal fluid of the ALS patients. Consistently, we found increased levels of H2 S in the tissues and in the media from mice spinal cord cultures bearing the fALS mutation SOD1G93A. In addition, NaHS, an H2 S donor, added to spinal culture, obtained from control C57BL/6J mice, is toxic for motor neurons, and induces an intracellular Ca(2+) increase, attenuated by the intracytoplasmatic application of adenosine triphosphate. We further show that H2 S is mainly released by astrocytes and microglia. INTERPRETATION: This study unravels H2 S as an astroglial mediator of motor neuron damage possibly involved in the cellular death characterizing ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/diagnosis , Hydrogen Sulfide/cerebrospinal fluid , Aged , Animals , Biomarkers/cerebrospinal fluid , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Organ Culture Techniques , Spinal Cord/metabolism
2.
Front Syst Neurosci ; 5: 56, 2011.
Article in English | MEDLINE | ID: mdl-21772817

ABSTRACT

Trace amines (TAs) are a class of endogenous compounds strictly related to classic monoamine neurotransmitters with regard to their structure, metabolism, and tissue distribution. Although the presence of TAs in mammalian brain has been recognized for decades, until recently they were considered to be by-products of amino acid metabolism or as "false" neurotransmitters. The discovery in 2001 of a new family of G-protein-coupled receptors (GPCRs), namely trace amines receptors, has re-ignited interest in TAs. In particular, two members of the family, trace amine receptor 1 (TA(1)) and trace amine receptor 2 (TA(2)), were shown to be highly sensitive to these endogenous compounds. Experimental evidence suggests that TAs modulate the activity of catecholaminergic neurons and that TA dysregulation may contribute to neuropsychiatric disorders, including schizophrenia, attention deficit hyperactivity disorder, depression and Parkinson's disease, all of which are characterized by altered monoaminergic networks. Here we review recent data concerning the electrophysiological effects of TAs on the activity of mesencephalic dopaminergic neurons. In the context of recent data obtained with TA(1) receptor knockout mice, we also discuss the mechanisms by which the activation of these receptors modulates the activity of these neurons. Three important new aspects of TAs action have recently emerged: (a) inhibition of firing due to increased release of dopamine; (b) reduction of D2 and GABA(B) receptor-mediated inhibitory responses (excitatory effects due to disinhibition); and (c) a direct TA(1) receptor-mediated activation of GIRK channels which produce cell membrane hyperpolarization. While the first two effects have been well documented in our laboratory, the direct activation of GIRK channels by TA(1) receptors has been reported by others, but has not been seen in our laboratory (Geracitano et al., 2004). Further research is needed to address this point, and to further characterize the mechanism of action of TAs on dopaminergic neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...