Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 170: 113458, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228902

ABSTRACT

Cannabis is well established as possessing immune modulating activity. The objective of this study was to evaluate the anti-inflammatory properties of selected cannabis-derived terpenes and cannabinoids. Based on their activity in cannabis-chemovar studies, α-pinene, trans-nerolidol, D-limonene, linalool and phytol were the selected terpenes evaluated. The cannabinoid compounds evaluated included cannabidivarin, cannabidiol, cannabinol, cannabichromene, cannabigerol and delta-9-tetrahydrocannabinol. Human PBMC were pretreated with each compound, individually, at concentrations extending from 0.001 to 10 µM and then stimulated with CpG (plasmacytoid dendritic cell), LPS (monocytes), or anti-CD3/CD28 (T cells). Proliferation, activation marker expression, cytokine production and phagocytosis, were quantified. Of the 21 responses assayed for each compound, cannabinoids showed the greatest immune modulating activity compared to their vehicle control. Delta-9-tetrahydrocannabinol possessed the greatest activity affecting 11 immune parameters followed by cannabidivarin, cannabigerol, cannabichromene, cannabinol and cannabidiol. α-Pinene showed the greatest immune modulating activity from the selected group of terpenes, followed by linalool, phytol, trans-nerolidol. Limonene had no effect on any of the parameters tested. Overall, these studies suggest that selected cannabis-derived terpenes displayed minimal immunological activity, while cannabinoids exhibited a broader range of activity. Compounds possessing anti-inflammatory effects may be useful in decreasing inflammation associated with a range of disorders, including neurodegenerative disorders.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Humans , Terpenes/pharmacology , Dronabinol/pharmacology , Cannabinol , Leukocytes, Mononuclear , Cannabinoids/pharmacology , Phytol
2.
J Neuroimmune Pharmacol ; 15(4): 780-793, 2020 12.
Article in English | MEDLINE | ID: mdl-32409991

ABSTRACT

HIV infection affects an estimated 38 million people. Approximately 50% of HIV patients exhibit neurocognitive dysfunction termed HIV-Associated Neurocognitive Disorder (HAND). HAND is a consequence of chronic low-level neuroinflammation due to HIV entry into the brain. Initially, monocytes become activated in circulation and traffic to the brain. Monocytes, when activated, become susceptible to infection by HIV and can then carry the virus across the blood brain barrier. Once in the brain, activated monocytes secrete chemokines, which recruit virus-specific CD8+ T cells into the brain to further promote neuroinflammation. HAND is closely linked to systemic inflammation driven, in part, by HIV but is also due to persistent translocation of microorganisms across the GI tract. Persistent anti-viral responses in the GI tract compromise microbial barrier integrity. Indeed, HIV patients can exhibit remarkably high levels of activated (CD16+) monocytes in circulation. Recent studies, including our own, show that HIV patients using medical marijuana exhibit lower levels of circulating CD16+ monocytes than non-cannabis using HIV patients. Cannabis is a known immune modulator, including anti-inflammatory properties, mediated, in part, by ∆9-tetrahydrocannabinol (THC), as well as less characterized minor cannabinoids, such as cannabidiol (CBD), terpenes and presumably other cannabis constituents. The immune modulating activity of THC is largely mediated through cannabinoid receptors (CB) 1 and 2, with CB1 also responsible for the psychotropic properties of cannabis. Here we discuss the anti-inflammatory properties of cannabinoids in the context of HIV and propose CB2 as a putative therapeutic target for the treatment of neuroinflammation. Graphical Abstract HIV-associated neurocognitive disorder is a systemic inflammatory disease leading to activation of plasmacytoid dendritic cells, monocytes and T cells. Monocyte and CD8 T cell migration across the BBB and interaction with astrocytes promotes neurotoxic inflammatory mediators release. CB2 ligands are proposed as therapeutics capable of suppressing systemic and localized inflammation.


Subject(s)
AIDS Dementia Complex/drug therapy , Cannabinoids/administration & dosage , Drug Delivery Systems/trends , Inflammation Mediators/antagonists & inhibitors , Leukocytes/drug effects , Receptor, Cannabinoid, CB2/agonists , AIDS Dementia Complex/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Brain/drug effects , Brain/metabolism , Dronabinol/administration & dosage , HIV Infections/drug therapy , HIV Infections/metabolism , Humans , Inflammation Mediators/metabolism , Leukocytes/metabolism , Receptor, Cannabinoid, CB2/metabolism
3.
Food Chem Toxicol ; 133: 110793, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31473338

ABSTRACT

The toxicity of dietary E 171, a food grade titanium dioxide was evaluated. A recent study reported rats receiving E 171 in water developed inflammation and aberrant crypt foci (ACF) in the gastrointestinal tract. Here, rats received food containing E 171 (7 or 100 days). The 100-day study included feeding E 171 after dimethylhydrazine (DMH) or vehicle only pretreatment. Food consumption was similar between treatment groups with maximum total cumulative E 171 exposure being 2617 mg/kg in 7 days and 29,400 mg/kg in 100 days. No differences were observed due to E 171 in the percentage of dendritic, CD4+ T or Treg cells within Peyer's patches or the periphery, or in cytokine production in plasma, sections of jejunum, and colon in 7- or 100-day E 171 alone fed rats. Differences were observed for IL-17A in colon (400 ppm E 171 + DMH) and IL-12p70 in plasma (40 ppm E 171 + DMH). E 171 had no effect on histopathologic evaluations of small and large intestines, liver, spleen, lungs, or testes, and no effects on ACF, goblet cell numbers, or colonic gland length. Dietary E 171 administration (7- or 100-day), even at high doses, produced no effect on the immune parameters or tissue morphology.


Subject(s)
Food Additives/toxicity , Intestinal Mucosa/drug effects , Titanium/toxicity , 1,2-Dimethylhydrazine/pharmacology , Animals , CD4-Positive T-Lymphocytes/drug effects , Carcinogenesis/drug effects , Carcinogens/pharmacology , Cytokines/metabolism , Dendritic Cells/drug effects , Food Additives/chemistry , Male , Particle Size , Peyer's Patches/drug effects , Rats, Wistar , T-Lymphocytes, Regulatory/drug effects , Titanium/chemistry
4.
J Pharmacol Exp Ther ; 371(1): 191-201, 2019 10.
Article in English | MEDLINE | ID: mdl-31383729

ABSTRACT

Cannabis is widely used in the United States, with an estimated prevalence of 9.5%. Certain cannabinoids in Cannabis sativa, Δ9-tetrahydrocannabinol (THC) in particular, possess immune-modulating and anti-inflammatory activity. Depending on the context, the anti-inflammatory activity of cannabinoids may be beneficial (e.g., in treating inflammatory diseases) or detrimental to normal immune defense against pathogens. The potential beneficial effect of cannabinoids on chronic neuroinflammation has gained recent attention. Monocyte migration to the brain has been implicated as a key event in chronic neuroinflammation and in the etiology of central nervous system diseases including viral infection (e.g., human immunodeficiency virus-associated neurocognitive disorder). In the brain, monocytes can contribute to neuroinflammation through interactions with astrocytes, including inducing astrocyte secretion of cytokines and chemokines. In a human coculture system, monocyte-derived interleukin (IL)-1ß due to Toll-like receptor 7 (TLR7) activation has been identified to promote astrocyte production of monocyte chemoattractant protein (MCP)-1 and IL-6. THC treatment of the TLR7-stimulated coculture suppressed monocyte secretion of IL-1ß, resulting in decreased astrocyte production of MCP-1 and IL-6. Furthermore, THC displayed direct inhibition of monocytes, as TLR7-stimulated monocyte monocultures treated with THC also showed suppressed IL-1ß production. The cannabinoid receptor 2 (CB2) agonist, JWH-015, impaired monocyte IL-1ß production similar to that of THC, suggesting that THC acts, in part, through CB2. THC also suppressed key elements of the IL-1ß production pathway, including IL1B mRNA levels and caspase-1 activity. Collectively, this study demonstrates that the anti-inflammatory properties of THC suppress TLR7-induced monocyte secretion of IL-1ß through CB2, which results in decreased astrocyte secretion of MCP-1 and IL-6. SIGNIFICANCE STATEMENT: Because cannabis use is highly prevalent in the United States and has putative anti-inflammatory properties, it is important to investigate the effect of cannabinoids on immune cell function. Furthermore, cannabinoids have garnered particular interest due to their potential beneficial effects on attenuating viral-induced chronic neuroinflammation. This study utilized a primary human coculture system to demonstrate that the major psychotropic cannabinoid in cannabis, Δ9-tetrahydrocannabinol, and a cannabinoid receptor-2 selective agonist suppress specific monocyte-mediated astrocyte inflammatory responses.


Subject(s)
Astrocytes/drug effects , Cannabinoid Receptor Agonists/pharmacology , Chemokine CCL2/metabolism , Dronabinol/pharmacology , Interleukin-6/metabolism , Monocytes/drug effects , Toll-Like Receptor 7/metabolism , Astrocytes/metabolism , Cells, Cultured , Chemokine CCL2/genetics , Coculture Techniques , Humans , Indoles/pharmacology , Interleukin-6/genetics , Monocytes/metabolism
5.
J Neuroimmunol ; 333: 576969, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31136945

ABSTRACT

Toll-like receptor 7 (TLR7)-activation has been implicated as a significant mechanism of neuroinflammation triggered by ssRNA viruses. Infiltration of monocytes into the brain and astrocyte activation occurs during in vivo TLR7-mediated neuroinflammation. The objective here was to determine whether the TLR7 agonist, imiquimod, and interferon-alpha (IFN-α), promote monocyte-mediated astrocyte secretion of pro-inflammatory factors. Using a human primary co-culture system, we demonstrate that monocytes, together with imiquimod and IFN-α, promote astrocyte secretion of MCP-1, IL-6 and IP-10. Furthermore, TLR7-induced monocyte-derived IL-1ß is critical for promoting the astrocyte response. Overall, this study provides a potential mechanism for TLR7-mediated neuroinflammation.


Subject(s)
Astrocytes/drug effects , Chemokine CCL2/metabolism , Chemokine CXCL10/metabolism , Imiquimod/pharmacology , Interferon-alpha/pharmacology , Interleukin-6/metabolism , Monocytes/drug effects , Toll-Like Receptor 7/physiology , Astrocytes/physiology , Cell Line , Coculture Techniques , Humans , Inflammation , Interleukin-1beta/pharmacology , Interleukin-1beta/physiology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/physiology , Monocytes/physiology , Neuroimmunomodulation , Recombinant Proteins/pharmacology , Toll-Like Receptor 7/agonists
6.
J Immunol ; 202(1): 228-238, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30530590

ABSTRACT

Current advances in combined antiretroviral therapy have rendered HIV infection a chronic, manageable disease; however, the problem of persistent immune activation still remains despite treatment. The immune cell receptor SLAMF7 has been shown to be upregulated in diseases characterized by chronic immune activation. In this study, we studied the function of the SLAMF7 receptor in immune cells of HIV patients and the impacts of SLAMF7 signaling on peripheral immune activation. We observed increased frequencies of SLAMF7+ PBMCs in HIV+ individuals in a clinical phenotype-dependent manner, with discordant and long-term nonprogressor patients showing elevated SLAMF7 levels, and elite controllers showing levels comparable to healthy controls. We also noted that SLAMF7 was sensitive to IFN-⍺ stimulation, a factor elevated during HIV infection. Further studies revealed SLAMF7 to be a potent inhibitor of the monocyte-derived proinflammatory chemokine CXCL10 (IP-10) and other CXCR3 ligands, except in a subset of HIV+ patients termed SLAMF7 silent (SF7S). Studies utilizing small molecule inhibitors revealed that the mechanism of CXCL10 inhibition is independent of known SLAMF7 binding partners. Furthermore, we determined that SLAMF7 activation on monocytes is able to decrease their susceptibility to HIV-1 infection in vitro via downregulation of CCR5 and upregulation of the CCL3L1 chemokine. Finally, we discovered that neutrophils do not express SLAMF7, are CXCL10+ at baseline, are able to secrete CXCL10 in response to IFN-⍺ and LPS, and are nonresponsive to SLAMF7 signaling. These findings implicate the SLAMF7 receptor as an important regulator of IFN-⍺-driven innate immune responses during HIV infection.


Subject(s)
HIV Infections/immunology , HIV-1/physiology , Interferon-alpha/metabolism , Neutrophils/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , Cells, Cultured , Chemokine CCL3/metabolism , Chemokine CXCL10/metabolism , Disease Progression , Disease Susceptibility , Humans , Phenotype , Receptors, CCR5/metabolism , Signal Transduction , Up-Regulation
7.
J Pharmacol Exp Ther ; 367(1): 49-58, 2018 10.
Article in English | MEDLINE | ID: mdl-30026298

ABSTRACT

Patients with HIV routinely use medicinal cannabinoids to treat neuropathic pain, anxiety, and human immunodeficiency virus (HIV)-associated wasting. However, Δ9-tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in cannabis, suppresses T-cell function and secretion of interferons, both critically important in the antiviral immune response. Interferon-α (IFNα), a key cytokine in T-cell activation and peripheral control of HIV infection, can potentiate responsiveness to interleukin-7 (IL-7), a crucial homeostatic cytokine for peripheral T-cell maintenance. The objective of this investigation was to compare the response of T cells to stimulation by IFNα and IL-7 in T cells from healthy and HIV+ donors in the absence and presence of THC. To compare T-cell responses between healthy and HIV+ donors signaling through IFNα receptor, IFNα-induced expression of IL-7α receptor (IL-7Rα), cognate signaling through IL-7R, and on IL-7-mediated T-cell proliferation were measured by flow cytometry and real-time quantitative polymerase chain reaction. CD8+ T cells from HIV+ donors showed a diminished response to IFNα-induced phosphorylated signal transducer and activator of transcription-1 activation compared with CD8+ T cells from healthy donors, whereas CD4+ T cells from HIV+ donors and healthy donors were comparable. Treatment with IFNα promoted IL-7R expression and potentiated IL-7-induced STAT5 phosphorylation to augment IL-7-mediated proliferation by T cells from healthy and HIV+ donors. Finally, HIV+ donors exhibited reduced sensitivity to THC-mediated suppression by IFNα- and IL-7-mediated stimulation compared with healthy donors. These results further support THC as being immune suppressive while identifying putatively beneficial aspects of cannabinoid-based therapies in HIV+ patients.


Subject(s)
Dronabinol/pharmacology , HIV Infections/immunology , Interferon-alpha/pharmacology , Lymphocyte Activation/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Adult , Aged , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cell Proliferation/drug effects , Drug Interactions , Humans , Interleukin-7/pharmacology , Male , Middle Aged , Phosphorylation/drug effects , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , T-Lymphocytes/metabolism , Up-Regulation/drug effects
8.
AIDS ; 32(4): 419-429, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29194121

ABSTRACT

OBJECTIVE: Chronic immune activation and elevated numbers of circulating activated monocytes (CD16) are implicated in HIV-associated neuroinflammation. The objective was to compare the level of circulating CD16 monocytes and IFN-γ-inducible protein 10 (IP-10) between HIV-infected cannabis users (HIV+MJ+) and noncannabis users (HIV+MJ-) and determine whether in-vitro Δ-Tetrahydrocannabinol (THC), a constituent of cannabis, affected CD16 expression as well as IP-10 production by monocytes. DESIGN: The levels of circulating CD16 monocytes and IP-10 from HIV+MJ- and HIV+MJ+ donors were examined. In-vitro experimentation using THC was performed on primary leukocytes isolated from HIV-MJ-, HIV+MJ- and HIV+MJ+ donors to determine if THC has an impact on CD16 monocyte and IP-10 levels. METHODS: Flow cytometry was used to measure the number of blood CD16 monocytes and plasma IP-10 from HIV+MJ- and HIV+MJ+ donors. Peripheral blood mononuclear cells were isolated from HIV-MJ- and HIV+ (MJ- and MJ+) donors for in-vitro THC and IFNα treatment, and CD16 monocytes and supernatant IP-10 were quantified. RESULTS: HIV+MJ+ donors possessed a lower level of circulating CD16 monocytes and plasma IP-10, compared with HIV+MJ- donors. Further, monocytes from HIV+MJ+ donors were unable to induce CD16 expression when treated with in-vitro IFNα, whereas HIV-MJ- and HIV+MJ- donors displayed pronounced CD16 induction, suggesting anti-inflammatory effects by cannabis. Lastly, in-vitro THC treatment impaired CD16 monocyte transition to CD16 and monocyte-derived IP-10. CONCLUSION: Components of cannabis, including THC, may decelerate peripheral monocyte processes that are implicated in HIV-associated neuroinflammation.


Subject(s)
Cannabis/adverse effects , Chemokine CXCL10/blood , HIV Infections/complications , HIV Infections/pathology , Monocytes/immunology , Receptors, IgG/analysis , Substance-Related Disorders/complications , Adult , Aged , Dronabinol/metabolism , Flow Cytometry , GPI-Linked Proteins/analysis , Humans , Leukocyte Count , Male , Middle Aged , Monocytes/chemistry , Monocytes/drug effects
9.
J Acquir Immune Defic Syndr ; 75(5): 588-596, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28692581

ABSTRACT

Plasmacytoid dendritic cells (pDCs) play a crucial role in host antiviral immune response through secretion of type I interferon. Interferon alpha (IFNα), a type I IFN, is critical for mounting the initial response to viral pathogens. A consequence of Human Immunodeficiency Virus-1 (HIV) infection is a decrease in both pDC number and function, but prolonged pDC activity has been linked with progression from HIV infection to the development of AIDS. Patients with HIV in the United States routinely use cannabinoid-based therapies to combat the side effects of HIV infection and antiretroviral therapy. However, cannabinoids, including Δ-tetrahydrocannabinol (THC), are well-characterized immunosuppressants. Here, we report that THC suppressed secretion of IFNα by pDC from both healthy and HIV+ donors through a mechanism involving impaired phosphorylation of interferon regulatory factor 7. These results suggest that THC can suppress pDC function during the early host antiviral response by dampening pDC activation.


Subject(s)
Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dronabinol/pharmacology , HIV Infections/immunology , HIV Infections/metabolism , Interferon-alpha/drug effects , Interferon-alpha/metabolism , Adult , Aged , Dendritic Cells/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , Humans , Immunity, Innate/drug effects , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...