Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 23(9): 1444-55, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26105158

ABSTRACT

We have previously demonstrated that a low dose of cyclophosphamide (Cy) combined with gene therapy of interleukin-12 (AdIL-12) has a synergistic, although limited, antitumoral effect in mice with colorectal carcinoma. The main mechanism involved in the efficacy of Cy+AdIL-12 was the induction of a specific immune response mediated by cytotoxic T lymphocytes. Our current aims were to evaluate the effects of 4-methylumbelliferone (4Mu), a selective inhibitor of hyaluronan (HA) synthesis, on tumor microenvironment (TME) and to investigate how 4Mu affects the therapeutic efficacy of Cy+AdIL-12. The results showed that 4Mu significantly reduced the amount of tumoral HA leading to a significant decrease in tumor interstitial pressure (TIP). As a consequence, tumor perfusion was improved allowing an increased adenoviral transgene expression. In addition, treatment with 4Mu boosted the number of cytotoxic T lymphocytes that reach the tumor after adoptive transfer resulting in a potent inhibition of tumor growth. Importantly, we observed complete tumor regression in 75% of mice when 4Mu was administrated in combination with Cy+AdIL-12. The triple combination 4Mu+Cy+AdIL-12 also induced a shift toward antiangiogenic factors production in tumor milieu. Our results showed that TME remodeling is an interesting strategy to increase the efficacy of anticancer immunotherapies based on gene and/or cell therapy.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Hymecromone/pharmacology , Immunotherapy , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Adenoviridae/genetics , Adoptive Transfer , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Combined Modality Therapy , Cyclophosphamide/pharmacology , Cytotoxicity, Immunologic , Disease Models, Animal , Gene Expression , Genes, Reporter , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Immunotherapy/methods , Interleukin-12/genetics , Interleukin-12/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/therapy , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transduction, Genetic , Transgenes , Tumor Burden/genetics , Tumor Burden/immunology
2.
J Cell Physiol ; 228(2): 469-75, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22767220

ABSTRACT

Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that was related to cancer development and metastasis dissemination on several types of tumors. However, it is not known the effect of SLPI on mammary and colon tumors. The aim of this study was to examine the effect of SLPI on mammary and colon tumor growth. The effect of SLPI was tested on in vitro cell apoptosis and in vivo tumor growth experiments. SLPI over-expressing human and murine mammary and colon tumor cells were generated by gene transfection. The administration of murine mammary tumor cells over-expressing high levels of SLPI did not develop tumors in mice. On the contrary, the administration of murine colon tumor cells over-expressing SLPI, developed faster tumors than control cells. Intratumoral, but not intraperitoneal administration of SLPI, delayed the growth of tumors and increased the survival of mammary but not colon tumor bearing mice. In vitro culture of mammary tumor cell lines treated with SLPI, and SLPI producer clones were more prone to apoptosis than control cells, mainly under serum deprivation culture conditions. Herein we demonstrated that SLPI induces the apoptosis of mammary tumor cells in vitro and decreases the mammary but not colon tumor growth in vivo. Therefore, SLPI may be a new potential therapeutic tool for certain tumors, such as mammary tumors.


Subject(s)
Breast Neoplasms/metabolism , Colonic Neoplasms/metabolism , Mammary Neoplasms, Animal/metabolism , Secretory Leukocyte Peptidase Inhibitor/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Female , Gene Silencing , Humans , Lung Neoplasms/metabolism , Mammary Neoplasms, Animal/drug therapy , Mice , Mice, Inbred BALB C , Secretory Leukocyte Peptidase Inhibitor/pharmacology , Transfection , Uterine Cervical Neoplasms/metabolism
3.
Clin Cancer Res ; 15(23): 7256-65, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19920110

ABSTRACT

PURPOSE: Interleukin-12 (IL-12) is an immunostimulatory cytokine with potent antitumor effects in several animal models. However, serious toxicity has been associated with its systemic application in humans. Gene transfer has emerged as a tool to specifically express therapeutic genes into the tumor/peritumoral milieu, thus avoiding systemic toxicity. The aim of this study was to analyze whether subtherapeutic doses of an adenovirus encoding IL-12 (AdIL-12) might synergize with low immunopotentiating doses of cyclophosphamide in the treatment of colorectal carcinoma. EXPERIMENTAL DESIGN: The antitumor effect of combining a single low dose of cyclophosphamide with an intratumoral injection of AdIL-12 was evaluated in an in vivo murine colorectal carcinoma model. The immune responses achieved with different treatments were monitored, comparing the effect of combining both therapies with individual treatments. RESULTS: The combined therapy induced a complete tumor regression in >50% of mice in a synergistic fashion, and it significantly prolonged their survival. This strategy was superior to each single treatment in reducing both peripheral and splenic CD4+CD25+Foxp3+ regulatory T cells, increasing the number of activated dendritic cells, and inducing IFN-gamma-secreting CD4-positive T lymphocytes. Importantly, the combined treatment generated a powerful tumor-specific CTL response. Consistently, a significant reduction in IL-10 levels was found. Our data suggest that the combination of nontoxic doses of cyclophosphamide with AdIL-12 allows the generation of good antitumoral responses, thus avoiding undesired side effects of both agents. CONCLUSIONS: Our data strongly support the use of a combination of cyclophosphamide and AdIL-12 as a novel therapeutic strategy against colorectal carcinoma.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Carcinoma/drug therapy , Colorectal Neoplasms/drug therapy , Cyclophosphamide/pharmacology , Gene Transfer Techniques , Genetic Therapy/methods , Interleukin-12/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , Forkhead Transcription Factors/biosynthesis , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-2 Receptor alpha Subunit/biosynthesis , Male , Mice , Mice, Inbred BALB C
4.
Cancer Lett ; 278(1): 9-16, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19185418

ABSTRACT

Hyaluronan modulates cancer progression by multiple mechanisms; nevertheless, its effects remain controversial. In this work, low molecular weight (LMW) hyaluronan but not high molecular weight (HMW) was found to significantly reduce colorectal carcinoma (CRC) growth in vitro and in vivo. Both survival and proliferation of CT26 tumor cells were affected by treatment with low doses of LMW HA, with involvement of Akt signaling mechanisms. We show for the first time that splenocytes isolated from LMW HA-treated animals present significantly higher proliferative capacity upon stimulation with dendritic cells (DCs) pulsed with tumor lysate. Consistently, expression of MHC class II and costimulatory molecules were increased in DCs isolated from the spleen of LMW HA-treated mice. Besides, increased tumor infiltrating lymphocytes was observed in animals treated with LMW HA. Our results suggest that LMW HA in a model of CRC triggers an activation of immune system, which is likely involved in the observed tumor growth inhibition. LMW HA is suggested as a candidate molecule for therapeutic adjuvant treatments in CRC immunotherapy.


Subject(s)
Adenocarcinoma/pathology , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Hyaluronic Acid/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Animals , Apoptosis/drug effects , Bone Marrow Cells/immunology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Dendritic Cells/immunology , Flow Cytometry , Hyaluronic Acid/immunology , Hyaluronic Acid/pharmacology , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/pathology , Male , Mice , Mice, Inbred BALB C , Molecular Weight
5.
Mini Rev Med Chem ; 9(13): 1538-46, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-20205635

ABSTRACT

Hyaluronan is a glycosaminglycan present in practically all tissues as an important component of the extracellular matrix. In spite of its apparent simple chemical structure, hyaluronan is a molecule with multiple and complex physiogical and pathological functions, Hyaluronan is able to regulate a variety of biological processes such as cellular growth, migration, differentiation and inflammation, not only in normal but also in cancer tissues. Besides, increasing evidence suggests hyaluronan as a potent modulator of immune responses which supports a potential role of this molecule in cancer immunotherapy.


Subject(s)
Hyaluronic Acid/biosynthesis , Neoplasms/immunology , Disease Progression , Humans , Hyaluronic Acid/physiology , Neoplasms/pathology
6.
J Gene Med ; 10(9): 993-1004, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18615449

ABSTRACT

BACKGROUND: The interaction between fibrogenic cells and extracellular matrix plays a role in liver fibrosis, yet the mechanisms are largely unknown. Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that is expressed by hepatic stellate cells and is overexpressed in fibrotic livers. We investigated the in vivo role of SPARC in experimentally induced liver fibrosis in rats. METHODS: A recombinant adenovirus carrying antisense SPARC was constructed (AdasSPARC). Advanced liver fibrosis was induced in Sprague-Dawley rats by prolonged intraperitoneal administration of thioacetamide. Animals received injections of AdasSPARC or Ad beta gal (control adenovirus) via the tail vein and directly into the liver 1 week after the first dose. The pathological changes in liver tissues and indices of fibrosis were assessed at eight weeks. Expression of SPARC, transforming growth factor (TGF)-beta and alpha-smooth muscle actin were evaluated by quantitative real-time polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS: Hepatic SPARC expression significantly increased during the development of liver fibrosis. AdasSPARC markedly attenuated the development of hepatic fibrosis in rats treated with thiocetamide, as assessed by decreased collagen deposition, lower hepatic content of hydroxyproline and less advanced morphometric stage of fibrosis. AdasSPARC treatment reduced inflammatory activity (Knodell score) and suppressed transdifferentiation of hepatic stellate cell to the myofibroblasts like phenotype in vivo. Furthermore, in vitro inhibition of SPARC on hepatic stellate cells decreases the production of TGF-beta. CONCLUSIONS: This is the first study to demonstrate that knockdown of hepatic SPARC expression ameliorates thioacetamide-induced liver fibrosis in rats with chronic liver injury. SPARC is a potential target for gene therapy in liver fibrosis.


Subject(s)
Adenoviridae/genetics , Liver Cirrhosis, Experimental/therapy , Osteonectin/antagonists & inhibitors , Actins/genetics , Actins/metabolism , Adenoviridae/metabolism , Animals , Cells, Cultured , Genetic Therapy , Humans , Immunohistochemistry , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , Neoplasms, Muscle Tissue/metabolism , Osteonectin/genetics , Osteonectin/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Thioacetamide/toxicity , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
7.
World J Gastroenterol ; 13(44): 5822-31, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17990348

ABSTRACT

Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNgamma in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Immunotherapy/methods , Antibodies, Monoclonal/therapeutic use , Colorectal Neoplasms/genetics , Genetic Therapy , Humans , Immunization , Tumor Escape/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...