Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(20): e2220924120, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37155853

ABSTRACT

Warming of the ocean waters surrounding Greenland plays a major role in driving glacier retreat and the contribution of glaciers to sea level rise. The melt rate at the junction of the ocean with grounded ice-or grounding line-is, however, not well known. Here, we employ a time series of satellite radar interferometry data from the German TanDEM-X mission, the Italian COSMO-SkyMed constellation, and the Finnish ICEYE constellation to document the grounding line migration and basal melt rates of Petermann Glacier, a major marine-based glacier of Northwest Greenland. We find that the grounding line migrates at tidal frequencies over a kilometer-wide (2 to 6 km) grounding zone, which is one order of magnitude larger than expected for grounding lines on a rigid bed. The highest ice shelf melt rates are recorded within the grounding zone with values from 60 ± 13 to 80 ± 15 m/y along laterally confined channels. As the grounding line retreated by 3.8 km in 2016 to 2022, it carved a cavity about 204 m in height where melt rates increased from 40 ± 11 m/y in 2016 to 2019 to 60 ± 15 m/y in 2020 to 2021. In 2022, the cavity remained open during the entire tidal cycle. Such high melt rates concentrated in kilometer-wide grounding zones contrast with the traditional plume model of grounding line melt which predicts zero melt. High rates of simulated basal melting in grounded glacier ice in numerical models will increase the glacier sensitivity to ocean warming and potentially double projections of sea level rise.

2.
Ann Rev Mar Sci ; 9: 1-29, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27575741

ABSTRACT

Quoting the ancient Romans: Audentes Fortuna iuvat. Being in the right place at the right time is useless if you do not grasp your Fortuna and build upon it. In this article, I expound on the milestones of my multiform research career, which over more than 40 years brought me from Venice to California to MIT; from the Venice problem to highly nonlinear, coherent structures in the ocean and atmosphere; and from the mare nostrum (the Mediterranean Sea), a laboratory for global processes, to the tropical ocean-atmosphere systems and regional coupled climate models of the Maritime Continent. The climate system, with its daunting complexity, is arguably the greatest challenge for, and the future of, the entirety of the earth sciences. Finally, living in and working for Venice has been the privilege and Fortuna of my life.


Subject(s)
Climate , Oceans and Seas , Atmosphere , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...