Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Prep Biochem Biotechnol ; : 1-13, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37937535

ABSTRACT

The study illustrated here aims on an organic solvent tolerant lipase from Staphylococcus capitis (SCL). The gene part, encoding the mature lipase, was cloned and sequenced. The concluded polypeptide sequence, equivalent to the protein, consist of 388 amino acid residues with a molecular mass of about 45 kDa. A structure-based alignment of the SCL amino acid sequence shows high identities with those many staphylococcal lipases. From this alignment of sequences, the catalytic triad (Ser 117, Asp 308 and His 347) of SCL could be identified. The mature part of the SCL was expressed in Escherichia coli and the recombinant lipase (r-SCL) was purified to homogeneity. The purified r-SCL presented a quite interesting stability at low temperatures (< 30 °C) and the enzyme was found to be highly stable in polar organic solvent and at a pH ranging from 3 to 12. After that, we have demonstrated that the recombinant enzyme may be implicated in the biodegradability of oily wastewater from effluents of fast-food restaurants; the maximum conversion yield into fatty acids obtained at 30 °C, was 65%.

2.
J Biomol Struct Dyn ; 41(20): 10450-10462, 2023 12.
Article in English | MEDLINE | ID: mdl-36546696

ABSTRACT

Cold-adapted and organic solvent tolerant lipases have significant potential in a wide range of synthetic reactions in industry. But there are no sufficient studies on how these enzymes interacts with their substrates. Herein, the predicted structure and function of the Staphylococcus capitis lipase (SCL) are studied. Given the high amino acid sequence homology with the Staphylococcus simulans lipase (SSL), 3D structure models of closed and open forms of the S. capitis lipase were built using the structure of SSL as template. The models suggested the presence of a main lid and a second lid that may act with the former as a double door to control the access to the active site. The SCL models also allowed us to identify key residues involved in binding substrates, calcium or zinc ions. By following this model and utilizing molecular dynamics (MD) simulations, the stability of the S. capitis lipase at low temperatures could be explained in the presence and in the absence of calcium and zinc. Due to its thermolability, the SCL is extremely valuable for different biotechnological applications in a wide variety of industries from molecular biology to detergency to food and beverage preparation.Communicated by Ramaswamy H. Sarma.


Subject(s)
Calcium , Staphylococcus capitis , Calcium/metabolism , Staphylococcus capitis/metabolism , Molecular Dynamics Simulation , Lipase/chemistry , Zinc , Ions
3.
Prep Biochem Biotechnol ; 52(1): 108-122, 2022.
Article in English | MEDLINE | ID: mdl-34289774

ABSTRACT

Using the statistical approach, this work seeks to optimize the process parameters to boost the generation of an organic solvent-tolerant lipase by Staphylococcus capitis SH6. The main parameters influencing the enzyme production were identified by using Plackett-Burman's screening design. Among the test variables, only tryptone (25 g/L), malt extract (2.5 g/L), NaCl (10 g/L) and pH (7.0) contributed positively to enzyme production. Then, the crude lipase was immobilized by adsorption on CaCO3 at pH 10. A maximum immobilization efficiency of 82% was obtained by incubating 280 mg of enzyme with CaCO3 (1 g) during 30 min. The immobilized lipase was more stable toward organic solvents than the free enzyme. It retained about 90% of its original activity in the presence of ethanol and methanol. After that, the immobilized enzyme was used for biodiesel production by transesterification process between waste oil and methanol or ethanol during 24 h at 30 °C. Our results show that the lipase can be utilized efficiently in biodiesel industry. Likewise, we have demonstrated that the immobilized enzyme may be implicated in the biodegradability of waste grease; the maximum conversion yield into fatty acids obtained after 12 h at 30 °C, was 57%.


Subject(s)
Biofuels , Enzymes, Immobilized/metabolism , Fats/metabolism , Lipase/metabolism , Staphylococcus capitis/enzymology , Biodegradation, Environmental , Biofuels/analysis , Biofuels/microbiology , Esterification , Solvents , Staphylococcus capitis/metabolism
4.
Biotechnol Prog ; 35(4): e2833, 2019 07.
Article in English | MEDLINE | ID: mdl-31050178

ABSTRACT

A mesophilic bacterial culture, producing an extracellular alkaline lipase, was isolated from the gas-washing wastewaters generated from the Sfax phosphate plant of the Tunisian Chemical Group and identified as Staphylococcus capitis strain. The lipase, named S. capitis lipase (SCL), has been purified to homogeneity from the culture medium. The purified enzyme molecular weight was around 45 kDa. Specific activities about 3,900 and 500 U/mg were measured using tributyrin and olive oil emulsion as substrates, respectively at 37°C and pH 8.5. Interestingly, the SCL maintained more than 60% of its initial activity over a wide pH values ranging from 5 to 11 with a high stability between pH 9 and 11 after 1 hr of incubation at room temperature. The lipase activity was enhanced in the presence of 2 mM of Mg2+ , Ca2+ , and K+ . SCL showed significant stability in the presence of detergents and organic solvents. Altogether, these features make the SCL useful for industrial applications. Besides, SCL was compatible with commercially available detergents, and its incorporation increases lipid degradation performances making it a potential candidate in detergent formulation.


Subject(s)
Detergents/chemistry , Lipase/isolation & purification , Lipase/metabolism , Solvents/chemistry , Staphylococcus capitis/enzymology , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Calcium/chemistry , Calcium/metabolism , Chromatography, Ion Exchange , Enzyme Stability , Hydrogen-Ion Concentration , Lipase/chemistry , Metals/chemistry , Metals/metabolism , Molecular Weight , Olive Oil/metabolism , Substrate Specificity , Temperature , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...