Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 9: 899646, 2022.
Article in English | MEDLINE | ID: mdl-36530494

ABSTRACT

Preoperative planning and intra-operative system setup are crucial steps to successfully integrate robotically assisted surgical systems (RASS) into the operating room. Efficiency in terms of setup planning directly affects the overall procedural costs and increases acceptance of RASS by surgeons and clinical personnel. Due to the kinematic limitations of RASS, selecting an optimal robot base location and surgery access point for the patient is essential to avoid potentially critical complications due to reachability issues. To this end, this work proposes a novel versatile method for RASS setup and planning based on robot capability maps (CMAPs). CMAPs are a common tool to perform workspace analysis in robotics, as they are in general applicable to any robot kinematics. However, CMAPs have not been completely exploited so far for RASS setup and planning. By adapting global CMAPs to surgical procedure-specific tasks and constraints, a novel RASS capability map (RASSCMAP) is generated. Furthermore, RASSCMAPs can be derived to also comply with kinematic access constraints such as access points in laparoscopy. RASSCMAPs are versatile and applicable to any kind of surgical procedure; they can be used on the one hand for aiding in intra-operative experience-based system setup by visualizing online the robot's capability to perform a task. On the other hand, they can be used to find the optimal setup by applying a multi-objective optimization based on a genetic algorithm preoperatively, which is then transfered to the operating room during system setup. To illustrate these applications, the method is evaluated in two different use cases, namely, pedicle screw placement in vertebral fixation procedures and general laparoscopy. The proposed RASSCMAPs help in increasing the overall clinical value of RASS by reducing system setup time and guaranteeing proper robot reachability to successfully perform the intended surgeries.

2.
Front Robot AI ; 8: 710021, 2021.
Article in English | MEDLINE | ID: mdl-34917652

ABSTRACT

A frequent concern for robot manipulators deployed in dangerous and hazardous environments for humans is the reliability of task executions in the event of a joint failure. A redundant robotic manipulator can be used to mitigate the risk and guarantee a post-failure task completion, which is critical for instance for space applications. This paper describes methods to analyze potential risks due to a joint failure, and introduces tools for fault-tolerant task design and path planning for robotic manipulators. The presented methods are based on off-line precomputed workspace models. The methods are general enough to cope with robots with any type of joint (revolute or prismatic) and any number of degrees of freedom, and might include arbitrarily shaped obstacles in the process, without resorting to simplified models. Application examples illustrate the potential of the approach.

4.
Biomed Phys Eng Express ; 8(1)2021 12 16.
Article in English | MEDLINE | ID: mdl-34757953

ABSTRACT

Objective.Bimanual humanoid platforms for home assistance are nowadays available, both as academic prototypes and commercially. Although they are usually thought of as daily helpers for non-disabled users, their ability to move around, together with their dexterity, makes them ideal assistive devices for upper-limb disabled persons, too. Indeed, teleoperating a bimanual robotic platform via muscle activation could revolutionize the way stroke survivors, amputees and patients with spinal injuries solve their daily home chores. Moreover, with respect to direct prosthetic control, teleoperation has the advantage of freeing the user from the burden of the prosthesis itself, overpassing several limitations regarding size, weight, or integration, and thus enables a much higher level of functionality.Approach.In this study, nine participants, two of whom suffer from severe upper-limb disabilities, teleoperated a humanoid assistive platform, performing complex bimanual tasks requiring high precision and bilateral arm/hand coordination, simulating home/office chores. A wearable body posture tracker was used for position control of the robotic torso and arms, while interactive machine learning applied to electromyography of the forearms helped the robot to build an increasingly accurate model of the participant's intent over time.Main results.All participants, irrespective of their disability, were uniformly able to perform the demanded tasks. Completion times, subjective evaluation scores, as well as energy- and time- efficiency show improvement over time on short and long term.Significance.This is the first time a hybrid setup, involving myoeletric and inertial measurements, is used by disabled people to teleoperate a bimanual humanoid robot. The proposed setup, taking advantage of interactive machine learning, is simple, non-invasive, and offers a new assistive solution for disabled people in their home environment. Additionnally, it has the potential of being used in several other applications in which fine humanoid robot control is required.


Subject(s)
Robotics , Self-Help Devices , Activities of Daily Living , Electromyography , Humans , Robotics/methods , Upper Extremity
5.
Front Robot AI ; 8: 704416, 2021.
Article in English | MEDLINE | ID: mdl-34708080

ABSTRACT

The sense of touch is a key aspect in the human capability to robustly grasp and manipulate a wide variety of objects. Despite many years of development, there is still no preferred solution for tactile sensing in robotic hands: multiple technologies are available, each one with different benefits depending on the application. This study compares the performance of different tactile sensors mounted on the variable stiffness gripper CLASH 2F, including three commercial sensors: a single taxel sensor from the companies Tacterion and Kinfinity, the Robotic Finger Sensor v2 from Sparkfun, plus a self-built resistive 3 × 3 sensor array, and two self-built magnetic 3-DoF touch sensors, one with four taxels and one with one taxel. We verify the minimal force detectable by the sensors, test if slip detection is possible with the available taxels on each sensor, and use the sensors for edge detection to obtain the orientation of the grasped object. To evaluate the benefits obtained with each technology and to assess which sensor fits better the control loop in a variable stiffness hand, we use the CLASH gripper to grasp fruits and vegetables following a published benchmark for pick and place operations. To facilitate the repetition of tests, the CLASH hand is endowed with tactile buttons that ease human-robot interactions, including execution of a predefined program, resetting errors, or commanding the full robot to move in gravity compensation mode.

6.
Front Robot AI ; 6: 138, 2019.
Article in English | MEDLINE | ID: mdl-33501153

ABSTRACT

Automation of logistic tasks, such as object picking and placing, is currently one of the most active areas of research in robotics. Handling delicate objects, such as fruits and vegetables, both in warehouses and in plantations, is a big challenge due to the delicacy and precision required for the task. This paper presents the CLASH hand, a Compliant Low-Cost Antagonistic Servo Hand, whose kinematics was specifically designed for handling groceries. The main feature of the hand is its variable stiffness, which allows it to withstand collisions with the environment and also to adapt the passive stiffness to the object weight while relying on a modular design using off-the-shelf low-cost components. Due to the implementation of differentially coupled flexors, the hand can be actuated like an underactuated hand but can also be driven with different stiffness levels to planned grasp poses, i.e., it can serve for both model-based grasp planning and for underactuated or model-free grasping. The hand also includes self-checking and logging processes, which enable more robust performance during grasping actions. This paper presents key aspects of the hand design, examines the robustness of the hand in impact tests, and uses a standardized fruit benchmarking test to verify the behavior of the hand when different actuator and sensor failures occur and are compensated for autonomously by the hand.

8.
Auton Robots ; 38(1): 65-88, 2015.
Article in English | MEDLINE | ID: mdl-26074671

ABSTRACT

The correct grasp of objects is a key aspect for the right fulfillment of a given task. Obtaining a good grasp requires algorithms to automatically determine proper contact points on the object as well as proper hand configurations, especially when dexterous manipulation is desired, and the quantification of a good grasp requires the definition of suitable grasp quality measures. This article reviews the quality measures proposed in the literature to evaluate grasp quality. The quality measures are classified into two groups according to the main aspect they evaluate: location of contact points on the object and hand configuration. The approaches that combine different measures from the two previous groups to obtain a global quality measure are also reviewed, as well as some measures related to human hand studies and grasp performance. Several examples are presented to illustrate and compare the performance of the reviewed measures.

9.
Front Neurorobot ; 8: 8, 2014.
Article in English | MEDLINE | ID: mdl-24616697

ABSTRACT

Stable myoelectric control of hand prostheses remains an open problem. The only successful human-machine interface is surface electromyography, typically allowing control of a few degrees of freedom. Machine learning techniques may have the potential to remove these limitations, but their performance is thus far inadequate: myoelectric signals change over time under the influence of various factors, deteriorating control performance. It is therefore necessary, in the standard approach, to regularly retrain a new model from scratch. We hereby propose a non-linear incremental learning method in which occasional updates with a modest amount of novel training data allow continual adaptation to the changes in the signals. In particular, Incremental Ridge Regression and an approximation of the Gaussian Kernel known as Random Fourier Features are combined to predict finger forces from myoelectric signals, both finger-by-finger and grouped in grasping patterns. We show that the approach is effective and practically applicable to this problem by first analyzing its performance while predicting single-finger forces. Surface electromyography and finger forces were collected from 10 intact subjects during four sessions spread over two different days; the results of the analysis show that small incremental updates are indeed effective to maintain a stable level of performance. Subsequently, we employed the same method on-line to teleoperate a humanoid robotic arm equipped with a state-of-the-art commercial prosthetic hand. The subject could reliably grasp, carry and release everyday-life objects, enforcing stable grasping irrespective of the signal changes, hand/arm movements and wrist pronation and supination.

SELECTION OF CITATIONS
SEARCH DETAIL
...