Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 28: 104855, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31871995

ABSTRACT

Biochars are emerging eco-friendly products showing outstanding properties in areas such as carbon sequestration, soil amendment, bioremediation, biocomposites, and bioenergy. These interesting materials can be synthesized from a wide variety of waste-derived sources, including lignocellulosic biomass wastes, manure and sewage sludge. In this work, abundant data on biochars produced from coconut-shell wastes obtained from the Colombian Pacific Coast are presented. Biochar synthesis was performed varying the temperature (in the range: 280 °C-420 °C) and O2 feeding (in the range: 0-5% v/v) in the pyrolysis reaction. Production yields and some biochar properties such as particle size, Zeta Potential, elemental content (C, N, Al, B, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Ti, Zn), BET surface area, FT-IR spectrum, XRD spectrum, and SEM morphology are presented. This data set is a comprehensive resource to gain a further understanding of biochars, and is a valuable tool for addressing the strategic exploitation of the multiple benefits they have.

2.
J Environ Manage ; 191: 268-274, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28126613

ABSTRACT

Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control.


Subject(s)
Manure/microbiology , Recycling , Flocculation , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...