Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
J Am Heart Assoc ; 13(10): e033328, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38757455

ABSTRACT

BACKGROUND: Mobile health technology's impact on cardiovascular risk factor control is not fully understood. This study evaluates the association between interaction with a mobile health application and change in cardiovascular risk factors. METHODS AND RESULTS: Participants with hypertension with or without dyslipidemia enrolled in a workplace-deployed mobile health application-based cardiovascular risk self-management program between January 2018 and December 2022. Retrospective evaluation explored the influence of application engagement on change in blood pressure (BP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and weight. Multiple regression analyses examined the influence of guideline-based, nonpharmacological lifestyle-based digital coaching on outcomes adjusting for confounders. Of 102 475 participants, 49.1% were women. Median age was 53 (interquartile range, 43-61) years, BP was 134 (interquartile range, 124-144)/84 (interquartile range, 78-91) mm Hg, TC was 183 (interquartile range, 155-212) mg/dL, LDL-C was 106 (82-131) mg/dL, and body mass index was 30 (26-35) kg/m2. At 2 years, participants with baseline systolic BP ≥140 mm Hg reduced systolic BP by 18.6 (SEM, 0.3) mm Hg. At follow up, participants with baseline TC ≥240 mg/dL reduced TC by 65.7 (SEM, 4.6) mg/dL, participants with baseline LDL-C≥160 mg/dL reduced LDL-C by 66.6 (SEM, 6.2) mg/dL, and participants with baseline body mass index ≥30 kg/m2 lost 12.0 (SEM, 0.3) pounds, or 5.1% of body weight. Interaction with digital coaching was associated with greater reduction in all outcomes. CONCLUSIONS: A mobile health application-based cardiovascular risk self-management program was associated with favorable reductions in BP, TC, LDL-C, and weight, highlighting the potential use of this technology in comprehensive cardiovascular risk factor control.


Subject(s)
Cardiovascular Diseases , Heart Disease Risk Factors , Self-Management , Telemedicine , Humans , Female , Male , Middle Aged , Self-Management/methods , Adult , Retrospective Studies , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/blood , Dyslipidemias/blood , Dyslipidemias/diagnosis , Dyslipidemias/therapy , Dyslipidemias/epidemiology , Mobile Applications , Hypertension/physiopathology , Hypertension/therapy , Blood Pressure/physiology , Cholesterol, LDL/blood , Risk Reduction Behavior
2.
Article in English | MEDLINE | ID: mdl-38311290

ABSTRACT

BACKGROUND: Sensory prediction allows the brain to anticipate and parse incoming self-generated sensory information from externally generated signals. Sensory prediction breakdowns may contribute to perceptual and agency abnormalities in psychosis (hallucinations, delusions). The pons, a central node in a cortico-ponto-cerebellar-thalamo-cortical circuit, is thought to support sensory prediction. Examination of pons connectivity in schizophrenia and its role in sensory prediction abnormalities is lacking. METHODS: We examined these relationships using resting-state functional magnetic resonance imaging and the electroencephalography-based auditory N1 event-related potential in 143 participants with psychotic spectrum disorders (PSPs) (with schizophrenia, schizoaffective disorder, or bipolar disorder); 63 first-degree relatives of individuals with psychosis; 45 people at clinical high risk for psychosis; and 124 unaffected comparison participants. This unique sample allowed examination across the psychosis spectrum and illness trajectory. Seeding from the pons, we extracted average connectivity values from thalamic and cerebellar clusters showing differences between PSPs and unaffected comparison participants. We predicted N1 amplitude attenuation during a vocalization task from pons connectivity and group membership. We correlated participant-level connectivity in PSPs and people at clinical high risk for psychosis with hallucination and delusion severity. RESULTS: Compared to unaffected comparison participants, PSPs showed pons hypoconnectivity to 2 cerebellar clusters, and first-degree relatives of individuals with psychosis showed hypoconnectivity to 1 of these clusters. Pons-to-cerebellum connectivity was positively correlated with N1 attenuation; only PSPs with heightened pons-to-postcentral gyrus connectivity showed this pattern, suggesting a possible compensatory mechanism. Pons-to-cerebellum hypoconnectivity was correlated with greater hallucination severity specifically among PSPs with schizophrenia. CONCLUSIONS: Deficient pons-to-cerebellum connectivity linked sensory prediction network breakdowns with perceptual abnormalities in schizophrenia. Findings highlight shared features and clinical heterogeneity across the psychosis spectrum.

3.
Article in English | MEDLINE | ID: mdl-37045705

ABSTRACT

BACKGROUND: Alterations in the brain's reward system may underlie motivation and pleasure deficits in schizophrenia (SZ). Neuro-oscillatory desynchronization in the alpha band is thought to direct resource allocation away from the internal state, to prioritize processing salient environmental events, including reward feedback. We hypothesized reduced reward-related alpha event-related desynchronization (ERD) in SZ, consistent with less externally focused processing during reward feedback. METHODS: Electroencephalography was recorded while participants with SZ (n = 54) and healthy control participants (n = 54) played a simple slot machine task. Total alpha band power (8-14 Hz), a measure of neural oscillation magnitude, was extracted via principal component analysis and compared between groups and reward outcomes. The clinical relevance of hypothesized alpha power alterations was examined by testing associations with negative symptoms within the SZ group and with trait rumination, dimensionally, across groups. RESULTS: A group × reward outcome interaction (p = .018) was explained by healthy control participants showing significant posterior-occipital alpha power suppression to wins versus losses (p < .001), in contrast to participants with SZ (p > .1). Among participants with SZ, this alpha ERD was unrelated to negative symptoms (p > .1). Across all participants, less alpha ERD to reward outcomes covaried with greater trait rumination for both win (p = .005) and loss (p = .002) outcomes, with no group differences in slope. CONCLUSIONS: These findings demonstrate alpha ERD alterations in SZ during reward outcome processing. Additionally, higher trait rumination was associated with less alpha ERD during reward feedback, suggesting that individual differences in rumination covary with external attention to reward processing, regardless of reward outcome valence or group membership.


Subject(s)
Schizophrenia , Humans , Electroencephalography , Motivation , Reward , Schizophrenic Psychology
4.
Schizophr Bull ; 49(5): 1364-1374, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37098100

ABSTRACT

Functional magnetic resonance imaging (fMRI) scanners are unavoidably loud and uncomfortable experimental tools that are necessary for schizophrenia (SZ) neuroscience research. The validity of fMRI paradigms might be undermined by well-known sensory processing abnormalities in SZ that could exert distinct effects on neural activity in the presence of scanner background sound. Given the ubiquity of resting-state fMRI (rs-fMRI) paradigms in SZ research, elucidating the relationship between neural, hemodynamic, and sensory processing deficits during scanning is necessary to refine the construct validity of the MR neuroimaging environment. We recorded simultaneous electroencephalography (EEG)-fMRI at rest in people with SZ (n = 57) and healthy control participants without a psychiatric diagnosis (n = 46) and identified gamma EEG activity in the same frequency range as the background sounds emitted from our scanner during a resting-state sequence. In participants with SZ, gamma coupling to the hemodynamic signal was reduced in bilateral auditory regions of the superior temporal gyri. Impaired gamma-hemodynamic coupling was associated with sensory gating deficits and worse symptom severity. Fundamental sensory-neural processing deficits in SZ are present at rest when considering scanner background sound as a "stimulus." This finding may impact the interpretation of rs-fMRI activity in studies of people with SZ. Future neuroimaging research in SZ might consider background sound as a confounding variable, potentially related to fluctuations in neural excitability and arousal.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Electroencephalography , Magnetic Resonance Imaging/methods , Arousal , Brain/diagnostic imaging , Brain Mapping/methods
5.
Article in English | MEDLINE | ID: mdl-36931469

ABSTRACT

BACKGROUND: Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS: Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS: Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS: Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.


Subject(s)
Schizophrenia , Humans , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Evoked Potentials , Electroencephalography
6.
Schizophr Res ; 255: 110-121, 2023 05.
Article in English | MEDLINE | ID: mdl-36989668

ABSTRACT

Brain dysconnectivity has been posited as a biological marker of schizophrenia. Emerging schizophrenia connectome research has focused on rich-club organization, a tendency for brain hubs to be highly-interconnected but disproportionately vulnerable to dysconnectivity. However, less is known about rich-club organization in individuals at clinical high-risk for psychosis (CHR-P) and how it compares with abnormalities early in schizophrenia (ESZ). Combining diffusion tensor imaging (DTI) and magnetic resonance imaging (MRI), we examined rich-club and global network organization in CHR-P (n = 41) and ESZ (n = 70) relative to healthy controls (HC; n = 74) after accounting for normal aging. To characterize rich-club regions, we examined rich-club MRI morphometry (thickness, surface area). We also examined connectome metric associations with symptom severity, antipsychotic dosage, and in CHR-P specifically, transition to a full-blown psychotic disorder. ESZ had fewer connections among rich-club regions (ps < .024) relative to HC and CHR-P, with this reduction specific to the rich-club even after accounting for other connections in ESZ relative to HC (ps < .048). There was also cortical thinning of rich-club regions in ESZ (ps < .013). In contrast, there was no strong evidence of global network organization differences among the three groups. Although connectome abnormalities were not present in CHR-P overall, CHR-P converters to psychosis (n = 9) had fewer connections among rich-club regions (ps < .037) and greater modularity (ps < .037) compared to CHR-P non-converters (n = 19). Lastly, symptom severity and antipsychotic dosage were not significantly associated with connectome metrics (ps < .012). Findings suggest that rich-club and connectome organization abnormalities are present early in schizophrenia and in CHR-P individuals who subsequently transition to psychosis.


Subject(s)
Antipsychotic Agents , Connectome , Psychotic Disorders , Schizophrenia , Humans , Adolescent , Schizophrenia/diagnostic imaging , Schizophrenia/complications , Connectome/methods , Diffusion Tensor Imaging/methods , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/complications , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
7.
Neuroimage Clin ; 37: 103301, 2023.
Article in English | MEDLINE | ID: mdl-36586360

ABSTRACT

BACKGROUND: Individual variation in brain aging trajectories is linked with several physical and mental health outcomes. Greater stress levels, worry, and rumination correspond with advanced brain age, while other individual characteristics, like mindfulness, may be protective of brain health. Multiple lines of evidence point to advanced brain aging in schizophrenia (i.e., neural age estimate > chronological age). Whether psychological dimensions such as mindfulness, rumination, and perceived stress contribute to brain aging in schizophrenia is unknown. METHODS: We estimated brain age from high-resolution anatomical scans in 54 healthy controls (HC) and 52 individuals with schizophrenia (SZ) and computed the brain predicted age difference (BrainAGE-diff), i.e., the delta between estimated brain age and chronological age. Emotional well-being summary scores were empirically derived to reflect individual differences in trait mindfulness, rumination, and perceived stress. Core analyses evaluated relationships between BrainAGE-diff and emotional well-being, testing for slopes differences across groups. RESULTS: HC showed higher emotional well-being (greater mindfulness and less rumination/stress), relative to SZ. We observed a significant group difference in the relationship between BrainAge-diff and emotional well-being, explained by BrainAGE-diff negatively correlating with emotional well-being scores in SZ, and not in HC. That is, SZ with younger appearing brains (predicted age < chronological age) had emotional summary scores that were more like HC, a relationship that endured after accounting for several demographic and clinical variables. CONCLUSIONS: These data reveal clinically relevant aspects of brain age heterogeneity among SZ and point to case-control differences in the relationship between advanced brain aging and emotional well-being.


Subject(s)
Mindfulness , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Aging , Emotions
8.
Clin EEG Neurosci ; 54(4): 370-378, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36213937

ABSTRACT

Background. The auditory steady state response (ASSR) is generated in bilateral auditory cortex and is the most used electroencephalographic (EEG) or magnetoencephalographic measure of gamma band abnormalities in schizophrenia. While the finding of reduced 40-Hz ASSR power and phase consistency in schizophrenia have been replicated many times, the 40-Hz ASSR phase locking angle (PLA), which assesses oscillation latency or phase delay, has rarely been examined. Furthermore, whether 40-Hz ASSR phase delay in schizophrenia is lateralized or common to left and right auditory cortical generators is unknown. Methods. Previously analyzed EEG data recorded from 24 schizophrenia patients and 24 healthy controls presented with 20-, 30-, and 40-Hz click trains to elicit ASSRs were re-analyzed to assess PLA in source space. Dipole moments in the right and left hemisphere were used to assess both frequency and hemisphere specificity of ASSR phase delay in schizophrenia. Results. Schizophrenia patients exhibited significantly reduced (ie, phase delayed) 40-Hz PLA in the left, but not the right, hemisphere, but their 20- and 30-Hz PLA values were normal. This left-lateralized 40-Hz phase delay was unrelated to symptoms or to previously reported left-lateralized PLF reductions in the schizophrenia patients. Conclusions. Consistent with sensor-based studies, the 40-Hz ASSR source-localized to left, but not right, auditory cortex was phase delayed in schizophrenia. Consistent with prior studies showing left temporal lobe volume deficits in schizophrenia, our findings suggest sluggish entrainment to 40-Hz auditory stimulation specific to left auditory cortex that are distinct from well-established deficits in gamma ASSR power and phase synchrony.


Subject(s)
Auditory Cortex , Schizophrenia , Humans , Schizophrenia/diagnosis , Evoked Potentials, Auditory/physiology , Electroencephalography/methods , Acoustic Stimulation/methods , Polyesters
9.
Schizophr Res ; 248: 89-97, 2022 10.
Article in English | MEDLINE | ID: mdl-35994912

ABSTRACT

BACKGROUND: The auditory N100 is an event related potential (ERP) that is reduced in schizophrenia, but its status in individuals at clinical high risk for psychosis (CHR) and its ability to predict conversion to psychosis remains unclear. We examined whether N100 amplitudes are reduced in CHR subjects relative to healthy controls (HC), and this reduction predicts conversion to psychosis in CHR. METHODS: Subjects included CHR individuals (n = 552) and demographically similar HC subjects (n = 236) from the North American Prodrome Longitudinal Study. Follow-up assessments identified CHR individuals who converted to psychosis (CHRC; n = 73) and those who did not (CHR-NC; n = 225) over 24 months. Electroencephalography data were collected during an auditory oddball task containing Standard, Novel, and Target stimuli. N100 peak amplitudes following each stimulus were measured at electrodes Cz and Fz. RESULTS: The CHR subjects had smaller N100 absolute amplitudes than HC subjects at Fz (F(1,786) = 4.00, p 0.046). A model comparing three groups (CHRC, CHR-NC, HC) was significant for Group at the Cz electrode (F(2,531) = 3.58, p = 0.029). Both Standard (p = 0.019) and Novel (p = 0.017) stimuli showed N100 absolute amplitude reductions in CHR-C relative to HC. A smaller N100 amplitude at Cz predicted conversion to psychosis in the CHR cohort (Standard: p = 0.009; Novel: p = 0.001) and predicted shorter time to conversion (Standard: p = 0.013; Novel: p = 0.001). CONCLUSION: N100 amplitudes are reduced in CHR individuals which precedes the onset of psychosis. N100 deficits in CHR individuals predict a greater likelihood of conversion to psychosis. Our results highlight N100's utility as a biomarker of psychosis risk.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Longitudinal Studies , Evoked Potentials , North America , Prodromal Symptoms
10.
JAMA Psychiatry ; 79(8): 780-789, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35675082

ABSTRACT

Importance: Although clinical criteria for identifying youth at risk for psychosis have been validated, they are not sufficiently accurate for predicting outcomes to inform major treatment decisions. The identification of biomarkers may improve outcome prediction among individuals at clinical high risk for psychosis (CHR-P). Objective: To examine whether mismatch negativity (MMN) event-related potential amplitude, which is deficient in schizophrenia, is reduced in young people with the CHR-P syndrome and associated with outcomes, accounting for effects of antipsychotic medication use. Design, Setting, and Participants: MMN data were collected as part of the multisite case-control North American Prodrome Longitudinal Study (NAPLS-2) from 8 university-based outpatient research programs. Baseline MMN data were collected from June 2009 through April 2013. Clinical outcomes were assessed throughout 24 months. Participants were individuals with the CHR-P syndrome and healthy controls with MMN data. Participants with the CHR-P syndrome who developed psychosis (ie, converters) were compared with those who did not develop psychosis (ie, nonconverters) who were followed up for 24 months. Analysis took place between December 2019 and December 2021. Main Outcomes and Measures: Electroencephalography was recorded during a passive auditory oddball paradigm. MMN elicited by duration-, pitch-, and duration + pitch double-deviant tones was measured. Results: The CHR-P group (n = 580; mean [SD] age, 19.24 [4.39] years) included 247 female individuals (42.6%) and the healthy control group (n = 241; mean age, 20.33 [4.74] years) included 114 female individuals (47.3%). In the CHR-P group, 450 (77.6%) were not taking antipsychotic medication at baseline. Baseline MMN amplitudes, irrespective of deviant type, were deficient in future CHR-P converters to psychosis (n = 77, unmedicated n = 54) compared with nonconverters (n = 238, unmedicated n = 190) in both the full sample (d = 0.27) and the unmedicated subsample (d = 0.33). In the full sample, baseline medication status interacted with group and deviant type indicating that double-deviant MMN, compared with single deviants, was reduced in unmedicated converters compared with nonconverters (d = 0.43). Further, within the unmedicated subsample, deficits in double-deviant MMN were most strongly associated with earlier conversion to psychosis (hazard ratio, 1.40 [95% CI, 1.03-1.90]; P = .03], which persisted over and above positive symptom severity. Conclusions and Relevance: This study found that MMN amplitude deficits were sensitive to future psychosis conversion among individuals at risk of CHR-P, particularly those not taking antipsychotic medication at baseline, although associations were modest. While MMN shows limited promise as a biomarker of psychosis onset on its own, it may contribute novel risk information to multivariate prediction algorithms and serve as a translational neurophysiological target for novel treatment development in a subgroup of at-risk individuals.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Acoustic Stimulation , Adolescent , Adult , Biomarkers , Electroencephalography , Evoked Potentials, Auditory/physiology , Female , Humans , Longitudinal Studies , Psychotic Disorders/diagnosis , Psychotic Disorders/drug therapy , Schizophrenia/diagnosis , Young Adult
11.
Mol Psychiatry ; 27(5): 2448-2456, 2022 05.
Article in English | MEDLINE | ID: mdl-35422467

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR) hypofunction is a leading pathophysiological model of schizophrenia. Resting-state functional magnetic resonance imaging (rsfMRI) studies demonstrate a thalamic dysconnectivity pattern in schizophrenia involving excessive connectivity with sensory regions and deficient connectivity with frontal, cerebellar, and thalamic regions. The NMDAR antagonist ketamine, when administered at sub-anesthetic doses to healthy volunteers, induces transient schizophrenia-like symptoms and alters rsfMRI thalamic connectivity. However, the extent to which ketamine-induced thalamic dysconnectivity resembles schizophrenia thalamic dysconnectivity has not been directly tested. The current double-blind, placebo-controlled study derived an NMDAR hypofunction model of thalamic dysconnectivity from healthy volunteers undergoing ketamine infusions during rsfMRI. To assess whether ketamine-induced thalamic dysconnectivity was mediated by excess glutamate release, we tested whether pre-treatment with lamotrigine, a glutamate release inhibitor, attenuated ketamine's effects. Ketamine produced robust thalamo-cortical hyper-connectivity with sensory and motor regions that was not reduced by lamotrigine pre-treatment. To test whether the ketamine thalamic dysconnectivity pattern resembled the schizophrenia pattern, a whole-brain template representing ketamine's thalamic dysconnectivity effect was correlated with individual participant rsfMRI thalamic dysconnectivity maps, generating "ketamine similarity coefficients" for people with chronic (SZ) and early illness (ESZ) schizophrenia, individuals at clinical high-risk for psychosis (CHR-P), and healthy controls (HC). Similarity coefficients were higher in SZ and ESZ than in HC, with CHR-P showing an intermediate trend. Higher ketamine similarity coefficients correlated with greater hallucination severity in SZ. Thus, NMDAR hypofunction, modeled with ketamine, reproduces the thalamic hyper-connectivity observed in schizophrenia across its illness course, including the CHR-P period preceding psychosis onset, and may contribute to hallucination severity.


Subject(s)
Ketamine , Schizophrenia , Glutamates/adverse effects , Hallucinations , Humans , Ketamine/pharmacology , Lamotrigine/adverse effects , Magnetic Resonance Imaging , Receptors, N-Methyl-D-Aspartate , Schizophrenia/drug therapy
12.
Brain Imaging Behav ; 16(3): 1186-1195, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34860349

ABSTRACT

Patients with depression who ruminate repeatedly focus on depressive thoughts; however, there are two cognitive subtypes of rumination, reflection and brooding, each associated with different prognoses. Reflection involves problem-solving and is associated with positive outcomes, whereas brooding involves passive, negative, comparison with other people and is associated with poor outcomes. Rumination has also been related to atypical functional hyperconnectivity between the default mode network and subgenual prefrontal cortex. Repetitive pulse transcranial magnetic stimulation of the prefrontal cortex has been shown to alter functional connectivity, suggesting that the abnormal connectivity associated with rumination could potentially be altered. This study examined potential repetitive pulse transcranial magnetic stimulation prefrontal cortical targets that could modulate one or both of these rumination subtypes. Forty-three patients who took part in a trial of repetitive pulse transcranial magnetic stimulation completed the Rumination Response Scale questionnaire and resting-state functional magnetic resonance imaging. Seed to voxel functional connectivity analyses identified an anticorrelation between the left lateral orbitofrontal cortex (-44, 26, -8; k = 172) with the default mode network-subgenual region in relation to higher levels of reflection. Parallel analyses were not significant for brooding or the RRS total score. These findings extend previous studies of rumination and identify a potential mechanistic model for symptom-based neuromodulation of rumination.


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Default Mode Network , Depression/diagnostic imaging , Depression/therapy , Humans , Magnetic Resonance Imaging , Prefrontal Cortex , Transcranial Magnetic Stimulation/methods
13.
Psychol Med ; 52(13): 2767-2775, 2022 10.
Article in English | MEDLINE | ID: mdl-33719985

ABSTRACT

BACKGROUND: Schizophrenia (SZ) is associated with thalamic dysconnectivity. Compared to healthy controls (HCs), individuals with SZ have hyperconnectivity with sensory regions, and hypoconnectivity with cerebellar, thalamic, and prefrontal regions. Despite replication of this pattern in chronically ill individuals, less is known about when these abnormalities emerge in the illness course and if they are present prior to illness onset. METHODS: Resting-state functional magnetic resonance imaging data were collected from psychosis risk syndrome (PRS) youth (n = 45), early illness SZ (ESZ) (n = 74) patients, and HCs (n = 85). Age-adjusted functional connectivity, seeded from the thalamus, was compared among the groups. RESULTS: Significant effects of group were observed in left and right middle temporal regions, left and right superior temporal regions, left cerebellum, and bilateral thalamus. Compared to HCs, ESZ demonstrated hyperconnectivity to all temporal lobe regions and reduced connectivity with cerebellar, anterior cingulate, and thalamic regions. Compared to HCs, PRS demonstrated hyperconnectivity with the left and right middle temporal regions, and hypoconnectivity with the cerebellar and other thalamic regions. Compared to PRS participants, ESZ participants were hyperconnected to temporal regions, but did not differ from PRS in hypoconnectivity with cerebellar and thalamic regions. Thalamic dysconnectivity was unrelated to positive symptom severity in ESZ or PRS groups. CONCLUSIONS: PRS individuals demonstrated an intermediate level of thalamic dysconnectivity, whereas ESZ showed a pattern consistent with prior observations in chronic samples. These cross-sectional findings suggest that thalamic dysconnectivity may occur prior to illness onset and become more pronounced in early illness stages.


Subject(s)
Psychotic Disorders , Schizophrenia , Adolescent , Humans , Cross-Sectional Studies , Magnetic Resonance Imaging , Neural Pathways , Thalamus
14.
Neuroimage ; 245: 118705, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34798229

ABSTRACT

The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.


Subject(s)
Brain/physiology , Electroencephalography , Hemodynamics , Magnetic Resonance Imaging , Nerve Net/physiology , Rest/physiology , Adolescent , Adult , Aged , Cerebrovascular Circulation/physiology , Female , Healthy Volunteers , Humans , Male , Middle Aged
15.
Psychopharmacology (Berl) ; 238(11): 3229-3237, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34363507

ABSTRACT

RATIONALE: Ketamine is a novel, rapid-acting antidepressant for treatment refractory depression (TRD); however, clinical durability is poor and treatment response trajectories vary. Little is known about which patient characteristics predict faster or more durable ketamine responses. Ketamine's antidepressant mechanism may involve modulation of glutamatergic signaling and long-term potentiation (LTP); these neuroplasticity pathways are also attenuated with older age. OBJECTIVE: A retrospective analysis examining the impact of patient age on the speed and durability of ketamine's antidepressant effects in 49 veterans receiving serial intravenous ketamine infusions for TRD. METHOD: The relationship between age and percent change in Beck Depression Inventory (BDI-II) scores was compared across six serial ketamine infusions (twice-weekly for 3 weeks) using a linear-mixed model. RESULTS: A significant Age-X-Infusion number interaction (F = 3.01, p = .0274) indicated that the relationship between age and treatment response depended on infusion number. Follow-up tests showed that younger age significantly predicted greater clinical improvement at infusion #4 (t = 3.02, p = .004); this relationship was attenuated at infusion #5 (t = 1.95, p = .057) and was absent at infusion #6. Age was not a significant predictor of treatment durability, defined as percent change in BDI-II 3 weeks following infusion #6. CONCLUSIONS: These data preliminarily suggest that younger age is associated with a faster response over six serial ketamine infusions; by infusion #6 and subsequent weeks of clinical follow-up, age no longer predicts ketamine's antidepressant activity. Age may mediate the speed but not the durability or total efficacy of ketamine treatment, suggesting that dissociable mechanisms may underlie differing aspects of ketamine's antidepressant activity.


Subject(s)
Depressive Disorder, Treatment-Resistant , Ketamine , Aged , Antidepressive Agents/therapeutic use , Depressive Disorder, Treatment-Resistant/drug therapy , Humans , Infant , Infant, Newborn , Ketamine/therapeutic use , Psychiatric Status Rating Scales , Retrospective Studies
16.
Psychiatry Res Neuroimaging ; 312: 111285, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33865147

ABSTRACT

Individuals with schizophrenia exhibit widespread cortical thinning associated with illness severity and deficits in cognition. However, intact cortical thickness (CTh) may serve as a protective factor. The current study sought to examine changes in CTh in response to auditory targeted cognitive training (TCT) in individuals with recent onset schizophrenia. Participants underwent MRI scanning and a cognitive assessment before and after being randomly assigned to 40 h of either TCT (N = 21) or a computer games control condition (CG; N = 22) over 16 weeks. Groups did not differ at baseline on demographic variables or measures of CTh. At the level of group averages, neither group showed significant pre-post changes in CTh in any brain region. However, changes in CTh related to individual differences in treatment outcome, as improved global cognition in the TCT group corresponded to reduced cortical thinning in frontal, temporal, parietal, and occipital lobes. These relationships were not observed in the CG group. The current findings suggest that TCT may be neuroprotective in early schizophrenia, such that individuals who improved in response to training also showed a reduction in cortical thinning that may be otherwise hastened due to age and illness.


Subject(s)
Cognition Disorders , Schizophrenia , Cognition , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Schizophrenia/therapy , Treatment Outcome
17.
Schizophr Res ; 230: 26-37, 2021 04.
Article in English | MEDLINE | ID: mdl-33667856

ABSTRACT

BACKGROUND: Adolescence/early adulthood coincides with accelerated pruning of cortical synapses and the onset of schizophrenia. Cortical gray matter reduction and dysconnectivity in schizophrenia are hypothesized to result from impaired synaptic plasticity mechanisms, including long-term potentiation (LTP), since deficient LTP may result in too many weak synapses that are then subject to over-pruning. Deficient plasticity has already been observed in schizophrenia. Here, we assessed whether such deficits are present in the psychosis risk syndrome (PRS), particularly those who subsequently convert to full psychosis. METHODS: An interim analysis was performed on a sub-sample from the NAPLS-3 study, including 46 healthy controls (HC) and 246 PRS participants. All participants performed an LTP-like visual cortical plasticity paradigm involving assessment of visual evoked potentials (VEPs) elicited by vertical and horizontal line gratings before and after high frequency ("tetanizing") visual stimulation with one of the gratings to induce "input-specific" neuroplasticity (i.e., VEP changes specific to the tetanized stimulus). Non-parametric, cluster-based permutation testing was used to identify electrodes and timepoints that demonstrated input-specific plasticity effects. RESULTS: Input-specific pre-post VEP changes (i.e., increased negative voltage) were found in a single spatio-temporal cluster covering multiple occipital electrodes in a 126-223 ms time window. This plasticity effect was deficient in PRS individuals who subsequently converted to psychosis, relative to PRS non-converters and HC. CONCLUSIONS: Input-specific LTP-like visual plasticity can be measured from VEPs in adolescents and young adults. Interim analyses suggest that deficient visual cortical plasticity is evident in those PRS individuals at greatest risk for transition to psychosis.


Subject(s)
Psychotic Disorders , Schizophrenia , Adolescent , Adult , Electroencephalography , Evoked Potentials, Visual , Humans , Longitudinal Studies , Neuronal Plasticity , United States , Young Adult
18.
Int J Psychophysiol ; 164: 30-40, 2021 06.
Article in English | MEDLINE | ID: mdl-33621618

ABSTRACT

INTRODUCTION: As we vocalize, our brains generate predictions of the sounds we produce to enable suppression of neural responses when intentions match vocalizations and to make adjustments when they do not. This may be instantiated by efference copy and corollary discharge mechanisms, which are impaired in people with schizophrenia (SZ). Although innate, these mechanisms can be affected by intentions. We asked if attending to pitch during vocalizations would take these mechanisms "off-line" and reduce suppression. METHODS: Event-related potentials (ERP) were recorded from 96 SZ and 92 healthy controls (HC) as they vocalized triplets in monotone (Phrase) or sang triplets in ascending thirds (Pitch). Pre-vocalization activity (Bereitschaftspotential, BP), N1, and P2 ERP components to sounds were compared during vocalization and playback. RESULTS: N1 was not as suppressed during Pitch as during Phrase. N1 suppression was not affected by SZ in either task when all data were collapsed across pitches (Pitch) and positions (Phrase). However, when binned according to vocalization performance, SZ showed less N1 suppression than HC at longer (>2 s) inter-stimulus intervals (Phrase) and inconsistent suppression across pitches (Pitch). Unlike N1, P2 was more suppressed during Pitch than Phrase and not affected by SZ. BP was greater during vocalization than playback but did not contribute to N1 or P2 effects. Pitch variability was inversely related to negative symptoms. CONCLUSIONS: Neural processing is not suppressed when patients and controls sing, and corollary discharge abnormalities in schizophrenia are only seen at long vocalization intervals.


Subject(s)
Schizophrenia , Singing , Electroencephalography , Evoked Potentials , Evoked Potentials, Auditory , Humans , Patient Discharge
19.
Front Psychiatry ; 12: 591127, 2021.
Article in English | MEDLINE | ID: mdl-33633603

ABSTRACT

Psychosis rates in autism spectrum disorder (ASD) are 5-35% higher than in the general population. The overlap in sensory and attentional processing abnormalities highlights the possibility of related neurobiological substrates. Previous research has shown that several electroencephalography (EEG)-derived event-related potential (ERP) components that are abnormal in schizophrenia, including P300, are also abnormal in individuals at Clinical High Risk (CHR) for psychosis and predict conversion to psychosis. Yet, it is unclear whether P300 is similarly sensitive to psychosis risk in help-seeking CHR individuals with ASD history. In this exploratory study, we leveraged data from the North American Prodrome Longitudinal Study (NAPLS2) to probe for the first time EEG markers of longitudinal psychosis profiles in ASD. Specifically, we investigated the P300 ERP component and its sensitivity to psychosis conversion across CHR groups with (ASD+) and without (ASD-) comorbid ASD. Baseline EEG data were analyzed from 304 CHR patients (14 ASD+; 290 ASD-) from the NAPLS2 cohort who were followed longitudinally over two years. We examined P300 amplitude to infrequent Target (10%; P3b) and Novel distractor (10%; P3a) stimuli from visual and auditory oddball tasks. Whereas P300 amplitude attenuation is typically characteristic of CHR and predictive of conversion to psychosis in non-ASD sample, in our sample, history of ASD moderated this relationship such that, in CHR/ASD+ individuals, enhanced - rather than attenuated - visual P300 (regardless of stimulus type) was associated with psychosis conversion. This pattern was also seen for auditory P3b amplitude to Target stimuli. Though drawn from a small sample of CHR individuals with ASD, these preliminary results point to a paradoxical effect, wherein those with both CHR and ASD history who go on to develop psychosis have a unique pattern of enhanced neural response during attention orienting to both visual and target stimuli. Such a pattern stands out from the usual finding of P300 amplitude reductions predicting psychosis in non-ASD CHR populations and warrants follow up in larger scale, targeted, longitudinal studies of those with ASD at clinical high risk for psychosis.

20.
Article in English | MEDLINE | ID: mdl-33431345

ABSTRACT

Clinical outcomes vary for individuals at clinical high risk (CHR) for psychosis, ranging from conversion to a psychotic disorder to full remission from the risk syndrome. Given that most CHR individuals do not convert to psychosis, recent research efforts have turned toward identifying specific predictors of CHR remission, a task that is conceptually and empirically dissociable from the identification of predictors of conversion to psychosis, and one that may reveal specific biological characteristics that confer resilience to psychosis and provide further insights into the mechanisms associated with the pathogenesis of schizophrenia and those underlying a transient CHR syndrome. Such biomarkers may ultimately facilitate the development of novel early interventions and support the optimization of individualized care. In this review, we focus on two event-related brain potential measures, mismatch negativity and P300, that have attracted interest as predictors of future psychosis among CHR individuals. We describe several recent studies examining whether mismatch negativity and P300 predict subsequent CHR remission and suggest that intact mismatch negativity and P300 may reflect the integrity of specific neurocognitive processes that confer resilience against the persistence of the CHR syndrome and its associated risk for future transition to psychosis. We also highlight several major methodological concerns associated with these studies that apply to the broader literature examining predictors of CHR remission. Among them is the concern that studies that predict dichotomous remission versus nonremission and/or dichotomous conversion versus nonconversion outcomes potentially confound remission and conversion effects, a phenomenon we demonstrate with a data simulation.


Subject(s)
Psychotic Disorders , Schizophrenia , Brain , Evoked Potentials , Humans , Psychotic Disorders/diagnosis , Remission Induction
SELECTION OF CITATIONS
SEARCH DETAIL
...