Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Evol Anthropol ; 32(1): 39-53, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36223539

ABSTRACT

Hominin footprints have not traditionally played prominent roles in paleoanthropological studies, aside from the famous 3.66 Ma footprints discovered at Laetoli, Tanzania in the late 1970s. This contrasts with the importance of trace fossils (ichnology) in the broader field of paleontology. Lack of attention to hominin footprints can probably be explained by perceptions that these are exceptionally rare and "curiosities" rather than sources of data that yield insights on par with skeletal fossils or artifacts. In recent years, however, discoveries of hominin footprints have surged in frequency, shining important new light on anatomy, locomotion, behaviors, and environments from a wide variety of times and places. Here, we discuss why these data are often overlooked and consider whether they are as "rare" as previously assumed. We review new ways footprint data are being used to address questions about hominin paleobiology, and we outline key opportunities for future research in hominin ichnology.


Subject(s)
Hominidae , Animals , Hominidae/anatomy & histology , Fossils , Paleontology , Locomotion
2.
Clin Biomech (Bristol, Avon) ; 78: 105091, 2020 08.
Article in English | MEDLINE | ID: mdl-32580097

ABSTRACT

BACKGROUND: Numerous studies have reported an association between rotator cuff injury and two-dimensional measures of scapular morphology. However, the mechanical underpinnings explaining how these shape features affect glenohumeral joint function and lead to injury are poorly understood. We hypothesized that three-dimensional features of scapular morphology differentiate asymptomatic shoulders from those with rotator cuff tears, and that these features would alter the mechanical advantage of the supraspinatus. METHODS: Twenty-four individuals with supraspinatus tears and twenty-seven age-matched controls were recruited. A statistical shape analysis identified scapular features distinguishing symptomatic patients from asymptomatic controls. We examined the effect of injury-associated morphology on mechanics by developing a morphable model driven by six degree-of-freedom biplanar videoradiography data. We used the model to simulate abduction for a range of shapes and computed the supraspinatus moment arm. FINDINGS: Rotator cuff injury was associated with a cranial orientation of the glenoid and scapular spine (P = .011, d = 0.75) and/or decreased subacromial space (P = .001, d = 0.94). The shape analysis also identified previously undocumented features associated with superior inclination and subacromial narrowing. In our computational model, warping the scapula from a cranial to a lateral orientation increased the supraspinatus moment arm at 20° of abduction and decreased the moment arm at 160° of abduction. INTERPRETATIONS: Three-dimensional analysis of scapular morphology indicates a stronger relationship between morphology and cuff tears than two-dimensional measures. Insight into how morphological features affect rotator cuff mechanics may improve patient-specific strategies for prevention and treatment of cuff tears.


Subject(s)
Mechanical Phenomena , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/physiopathology , Rotator Cuff/pathology , Rotator Cuff/physiopathology , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Movement , Shoulder Joint/physiopathology
3.
J Hum Evol ; 122: 70-83, 2018 09.
Article in English | MEDLINE | ID: mdl-29970233

ABSTRACT

The ecological and selective forces that sparked the emergence of Homo's adaptive strategy remain poorly understood. New fossil and archaeological finds call into question previous interpretations of the grade shift that drove our ancestors' evolutionary split from the australopiths. Furthermore, issues of taphonomy and scale have limited reconstructions of the hominin habitats and faunal communities that define the environmental context of these behavioral changes. The multiple ∼1.5 Ma track surfaces from the Okote Member of the Koobi Fora Formation at East Turkana provide unique windows for examining hominin interactions with the paleoenvironment and associated faunas at high spatiotemporal resolution. These surfaces preserve the tracks of many animals, including cf. Homo erectus. Here, we examine the structure of the animal community that inhabited this landscape, considering effects of preservation bias by comparing the composition of the track assemblage to a skeletal assemblage from the same time and place. We find that the track and skeletal assemblages are similar in their representation of the vertebrate paleocommunity, with comparable levels of taxonomic richness and diversity. Evenness (equitability of the number of individuals per taxon) differs between the two assemblages due to the very different circumstances of body fossil versus track preservation. Both samples represent diverse groups of taxa including numerous water-dependent species, consistent with geological interpretations of the track site environments. Comparisons of these assemblages also show a pattern of non-random hominin association with a marginal lacustrine habitat relative to other vertebrates in the track assemblage. This evidence is consistent with behavior that included access to aquatic foods and possibly hunting by H. erectus in lake margins/edaphic grasslands. Such behaviors may signal the emergence of the adaptative strategies that define our genus.


Subject(s)
Archaeology , Biota , Birds , Fossils , Mammals , Reptiles , Animals , Hominidae , Kenya , Life History Traits , Paleontology
4.
J Hum Evol ; 112: 93-104, 2017 11.
Article in English | MEDLINE | ID: mdl-28917702

ABSTRACT

Tracks can provide unique, direct records of behaviors of fossil organisms moving across their landscapes millions of years ago. While track discoveries have been rare in the human fossil record, over the last decade our team has uncovered multiple sediment surfaces within the Okote Member of the Koobi Fora Formation near Ileret, Kenya that contain large assemblages of ∼1.5 Ma fossil hominin tracks. Here, we provide detailed information on the context and nature of each of these discoveries, and we outline the specific data that are preserved on the Ileret hominin track surfaces. We analyze previously unpublished data to refine and expand upon earlier hypotheses regarding implications for hominin anatomy and social behavior. While each of the track surfaces discovered at Ileret preserves a different amount of data that must be handled in particular ways, general patterns are evident. Overall, the analyses presented here support earlier interpretations of the ∼1.5 Ma Ileret track assemblages, providing further evidence of large, human-like body sizes and possibly evidence of a group composition that could support the emergence of certain human-like patterns of social behavior. These data, used in concert with other forms of paleontological and archaeological evidence that are deposited on different temporal scales, offer unique windows through which we can broaden our understanding of the paleobiology of hominins living in East Africa at ∼1.5 Ma.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Hominidae/physiology , Locomotion , Social Behavior , Animals , Archaeology , Biological Evolution , Kenya , Paleontology
5.
Sci Rep ; 6: 28766, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27403790

ABSTRACT

Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6-7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus.


Subject(s)
Foot/physiology , Fossils , Hominidae/physiology , Locomotion/physiology , Social Behavior , Animals , Biological Evolution , Biomechanical Phenomena/physiology , Body Size/physiology , Foot/anatomy & histology , Gait/physiology , Hominidae/anatomy & histology , Humans , Walking/physiology
6.
Sci Rep ; 6: 26374, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27199261

ABSTRACT

Reconstructing hominin paleoecology is critical for understanding our ancestors' diets, social organizations and interactions with other animals. Most paleoecological models lack fine-scale resolution due to fossil hominin scarcity and the time-averaged accumulation of faunal assemblages. Here we present data from 481 fossil tracks from northwestern Kenya, including 97 hominin footprints attributed to Homo erectus. These tracks are found in multiple sedimentary layers spanning approximately 20 thousand years. Taphonomic experiments show that each of these trackways represents minutes to no more than a few days in the lives of the individuals moving across these paleolandscapes. The geology and associated vertebrate fauna place these tracks in a deltaic setting, near a lakeshore bordered by open grasslands. Hominin footprints are disproportionately abundant in this lake margin environment, relative to hominin skeletal fossil frequency in the same deposits. Accounting for preservation bias, this abundance of hominin footprints indicates repeated use of lakeshore habitats by Homo erectus. Clusters of very large prints moving in the same direction further suggest these hominins traversed this lakeshore in multi-male groups. Such reliance on near water environments, and possibly aquatic-linked foods, may have influenced hominin foraging behavior and migratory routes across and out of Africa.


Subject(s)
Geologic Sediments/analysis , Hominidae/anatomy & histology , Animals , Archaeology , Body Size , Fossils , Hominidae/physiology , Humans , Kenya
8.
Am J Phys Anthropol ; 159(Suppl 61): S4-S18, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26808111

ABSTRACT

Gorillas living in western central Africa (Gorilla gorilla) are morphologically and genetically distinguishable from those living in eastern central Africa (Gorilla beringei). Genomic analyses show eastern gorillas experienced a significant reduction in population size during the Pleistocene subsequent to geographical isolation from their western counterparts. However, how these results relate more specifically to the recent biogeographical and evolutionary history of eastern gorillas remains poorly understood. Here we show that two rare morphological traits are present in the hands and feet of both eastern gorilla subspecies at strikingly high frequencies (>60% in G. b. graueri; ∼28% in G. b. beringei) in comparison with western gorillas (<1%). The intrageneric distribution of these rare traits suggests that they became common among eastern gorillas after diverging from their western relatives during the early to middle Pleistocene. The extremely high frequencies observed among grauer gorillas-which currently occupy a geographic range more than ten times the size of that of mountain gorillas-imply that grauers originated relatively recently from a small founding population of eastern gorillas. Current paleoenvironmental, geological, and biogeographical evidence supports the hypothesis that a small group of eastern gorillas likely dispersed westward from the Virungas into present-day grauer range in the highlands just north of Lake Kivu, either immediately before or directly after the Younger Dryas interval. We propose that as the lowland forests of central Africa expanded rapidly during the early Holocene, they became connected with the expanding highland forests along the Albertine Rift and enabled the descendants of this small group to widely disperse. The descendant populations significantly expanded their geographic range and population numbers relative to the gorillas of the Virunga Mountains and the Bwindi-Impenetrable Forest, ultimately resulting in the grauer gorilla subspecies recognized today. This founder-effect hypothesis offers some optimism for modern conservation efforts to save critically endangered eastern gorillas from extinction.


Subject(s)
Biological Evolution , Gorilla gorilla , Africa, Central , Africa, Eastern , Animals , Environment , Female , Foot Bones/anatomy & histology , Fossils , Gorilla gorilla/anatomy & histology , Gorilla gorilla/classification , Gorilla gorilla/genetics , Gorilla gorilla/physiology , Male , Phylogeny
10.
Proc Natl Acad Sci U S A ; 112(38): 11829-34, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351685

ABSTRACT

Reconstructing the behavioral shifts that drove hominin evolution requires knowledge of the timing, magnitude, and direction of anatomical changes over the past ∼6-7 million years. These reconstructions depend on assumptions regarding the morphotype of the Homo-Pan last common ancestor (LCA). However, there is little consensus for the LCA, with proposed models ranging from African ape to orangutan or generalized Miocene ape-like. The ancestral state of the shoulder is of particular interest because it is functionally associated with important behavioral shifts in hominins, such as reduced arboreality, high-speed throwing, and tool use. However, previous morphometric analyses of both living and fossil taxa have yielded contradictory results. Here, we generated a 3D morphospace of ape and human scapular shape to plot evolutionary trajectories, predict ancestral morphologies, and directly test alternative evolutionary hypotheses using the hominin fossil evidence. We show that the most parsimonious model for the evolution of hominin shoulder shape starts with an African ape-like ancestral state. We propose that the shoulder evolved gradually along a single morphocline, achieving modern human-like configuration and function within the genus Homo. These data are consistent with a slow, progressive loss of arboreality and increased tool use throughout human evolution.


Subject(s)
Fossils , Hominidae/anatomy & histology , Pan troglodytes/anatomy & histology , Shoulder/anatomy & histology , Animals , Humans , Least-Squares Analysis , Models, Biological , Phylogeny , Principal Component Analysis , Time Factors
12.
J Hum Evol ; 80: 107-13, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25439706

ABSTRACT

Powerful, accurate throwing may have been an important mode of early hunting and defense. Previous work has shown that throwing performance is functionally linked to several anatomical shifts in the upper body that occurred during human evolution. The final shift to occur is the inferior reorientation of the shoulder. Fossil scapulae show the earliest evidence of a more inferior glenoid in Homo erectus. However, where the scapula rests on the thorax is uncertain. The relative length of the clavicle, the only skeletal attachment of the scapula to the torso, is quite variable. Depending on which fossils or skeletal measures are used to reconstruct the H. erectus shoulder, either a novel, anteriorly facing shoulder configuration or a modern human-like lateral orientation is possible. These competing hypotheses have led to very different conclusions regarding the throwing ability and hunting behavior of early Homo. Here, we evaluate competing models of H. erectus shoulder morphology and examine how these models relate to throwing performance. To address these questions, we collected skeletal measures from fossil and extant taxa, as well as anthropometric (N = 36) and kinematic (N = 27) data from Daasanach throwers from northwestern Kenya. Our data show that all H. erectus fossil clavicles fall within the normal range of modern human variation. We find that a commonly used metric for normalizing clavicle length, the claviculohumeral ratio, poorly predicts shoulder position on the torso. Furthermore, no significant relationship between clavicle length and any measure of throwing performance was found. These data support reconstructing the H. erectus shoulder as modern human-like, with a laterally facing glenoid, and suggest that the capacity for high speed throwing dates back nearly two million years.


Subject(s)
Clavicle/anatomy & histology , Fossils , Hominidae/anatomy & histology , Movement , Shoulder Joint/anatomy & histology , Anatomy, Comparative , Animals , Biological Evolution , Biomechanical Phenomena , Clavicle/physiology , Hominidae/physiology , Humans , Kenya , Male , Scapula/anatomy & histology , Scapula/physiology , Shoulder Joint/physiology
13.
J Exp Biol ; 217(Pt 12): 2139-49, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24675564

ABSTRACT

High-speed and accurate throwing is a distinctive human behavior. Achieving fast projectile speeds during throwing requires a combination of elastic energy storage at the shoulder, as well as the transfer of kinetic energy from proximal body segments to distal segments. However, the biomechanical bases of these mechanisms are not completely understood. We used inverse dynamics analyses of kinematic data from 20 baseball players fitted with four different braces that inhibit specific motions to test a model of power generation at key joints during the throwing motion. We found that most of the work produced during throwing is generated at the hips, and much of this work (combined with smaller contributions from the pectoralis major) is used to load elastic elements in the shoulder and power the rapid acceleration of the projectile. Despite rapid angular velocities at the elbow and wrist, the restrictions confirm that much of the power generated to produce these distal movements comes from larger proximal segments, such as the shoulder and torso. Wrist hyperextension enhances performance only modestly. Together, our data also suggest that heavy reliance on elastic energy storage may help explain some common throwing injuries and can provide further insight into the evolution of the upper body and when our ancestors first developed the ability to produce high-speed throws.


Subject(s)
Baseball/physiology , Movement , Upper Extremity/physiology , Acceleration , Biomechanical Phenomena , Humans , Kinetics , Male , Rotation , Torque , Videotape Recording , Young Adult
14.
Nature ; 498(7455): 483-6, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23803849

ABSTRACT

Some primates, including chimpanzees, throw objects occasionally, but only humans regularly throw projectiles with high speed and accuracy. Darwin noted that the unique throwing abilities of humans, which were made possible when bipedalism emancipated the arms, enabled foragers to hunt effectively using projectiles. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence of when, how and why hominins evolved the ability to generate high-speed throws. Here we use experimental studies of humans throwing projectiles to show that our throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately 2 million years ago in the species Homo erectus. Taking into consideration archaeological evidence suggesting that hunting activity intensified around this time, we conclude that selection for throwing as a means to hunt probably had an important role in the evolution of the genus Homo.


Subject(s)
Biological Evolution , Elasticity , Hominidae/anatomy & histology , Hominidae/physiology , Shoulder/anatomy & histology , Shoulder/physiology , Acceleration , Animals , Biomechanical Phenomena , Fossils , Humans , Kinetics , Rotation , Torque
15.
J Hum Evol ; 55(4): 652-64, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18672269

ABSTRACT

Rift Valley sites in southern Ethiopia and northern Kenya preserve the oldest fossil remains attributed to Homo sapiens and the earliest archaeological sites attributed to the Middle Stone Age (MSA). New localities from the Kapedo Tuffs augment the sparse sample of MSA sites from the northern Kenya Rift. Tephrostratigraphic correlation with dated pyroclastic deposits from the adjacent volcano Silali suggests an age range of 135-123ka for archaeological sites of the Kapedo Tuffs. Comparisons of the Kapedo Tuffs archaeological assemblages with those from the adjacent Turkana and Baringo basins show broad lithic technological similarity but reveal that stone raw material availability is a key factor in explaining typologically defined archaeological variability within this region. Spatially and temporally resolved comparisons such as this provide the best means to link the biological and behavioral variation manifest in the record of early Homo sapiens.


Subject(s)
Archaeology , Geologic Sediments/chemistry , Cluster Analysis , Ethiopia , Glass/analysis , History, Ancient , Humans , Kenya , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...