Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 38(4): 725-36, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15713293

ABSTRACT

We present the development of a vision-feedback method to characterize how selective paralysis distorts the three-dimensional (3D) volume representing digit-tip force production capability and its application to healthy individuals producing thumb-tip force with and without simulated low ulnar nerve palsy (LUNP). Subjects produced maximal static voluntary force spanning the transverse, sagittal and frontal planes of the thumb (16, 15 and 10 subjects, respectively). Subjects produced thumb-tip force tasks in guided and self-selected directions. The envelope (convex hull) of extreme forces in each plane approximated that cross-section of the 3D volume of force capability. Some subjects repeated the tasks with a temporary ulnar nerve block applied at the wrist to simulate complete acute LUNP. Three geometric properties of the force convex hull characterized each cross-section's shape: the ratios of its principal moments of inertia (RPMIs), the orientation of its principal axis (OPA), and its centroid location. Our results show that force production in the thumb's sagittal plane may be a reproducible and objective test to grade motor impairment in LUNP: paired t-tests of the larger RPMI in this plane best distinguished the nerve-blocked cases from the control cases in the guided task (p = 0.012), and Discriminant Analysis of the centroid location for the self-selected task in this plane correctly classified 94.7% of subjects into the control and ulnar nerve-blocked groups. We show that our method measures and detects changes in a digit's force production capabilities. Towards a clinical test of motor impairment in LUNP, this biomechanical study dictates which 3D thumb-tip forces to measure (those in the sagittal plane) and how to measure them (using the self-selected task).


Subject(s)
Thumb/physiopathology , Ulnar Neuropathies/physiopathology , Biomechanical Phenomena , Humans , Motor Activity/physiology , Nerve Block , Task Performance and Analysis , Ulnar Neuropathies/chemically induced
2.
J Orthop Res ; 22(2): 306-12, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15013089

ABSTRACT

A rigorous description of the magnitude and direction of the 3D force vector each thumb muscle produces at the thumb-tip is necessary to understand the biomechanical consequences to pinch of a variety of paralyses and surgical procedures (such as tendon transfers). In this study, we characterized the 3D force vector each muscle produces at the thumb-tip, and investigated if these thumb-tip force vectors scaled linearly with tendon tension. In 13 cadaver specimens, we measured the output 3D thumb-tip force vector produced by each tendon acting on the thumb, plus two common tendon transfers, as a function of input tendon tension. After fixing the hand to a rigid frame, we mounted the thumb by configuring it in standardized key or opposition pinch posture and coupling the thumb-tip to a rigidly held 6 degree-of-freedom force/torque sensor. Linear actuators applied tension to the distal tendons of the four extrinsic thumb muscles, and to six Nylon cords reproducing the lines of action of (i) the four intrinsic thumb muscles and (ii) two alternative tendon transfers commonly used to restore thumb opposition following low median nerve palsy. Each computer-controlled linear actuator ramped tendon tension from zero to 1/3 of predicted maximal muscle force expected at each tendon, and back to zero, while we measured the 3D force vector at the thumb-tip. In test/re-test trials, we saw thumb-tip force vectors were quite sensitive to mounting procedure, but also sensitive to variations in the seating of joint surfaces. We found that: (i) some thumb-tip force vectors act in unexpected directions (e.g., the opponens force vector is parallel to the distal phalanx), (ii) the two tendon transfers produced patently different force vectors, and (iii) for most muscles, thumb-tip force vectors do not scale linearly with tendon tension--likely due to load-dependent viscoelastic tendon paths, joint seating and/or bone motion. Our 3D force vector data provide the first quantitative reference descriptions of the thumb-tip force vectors produced by all thumb muscles and two tendon transfers. We conclude that it may not be realistic to assume in biomechanical models that thumb-tip force vectors scale linearly with tendon tensions, and that our data suggest the thumb may act as a "floating digit" affected by load-dependent trapezium motion.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/physiology , Thumb/physiology , Aged , Biomechanical Phenomena , Cadaver , Female , Humans , Male , Stress, Mechanical , Tendons/physiology , Thumb/anatomy & histology , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...