Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Biol Chem ; 286(2): 942-51, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21036901

ABSTRACT

Cross-talk between Gα(i)- and Gα(q)-linked G-protein-coupled receptors yields synergistic Ca(2+) responses in a variety of cell types. Prior studies have shown that synergistic Ca(2+) responses from macrophage G-protein-coupled receptors are primarily dependent on phospholipase Cß3 (PLCß3), with a possible contribution of PLCß2, whereas signaling through PLCß4 interferes with synergy. We here show that synergy can be induced by the combination of Gßγ and Gα(q) activation of a single PLCß isoform. Synergy was absent in macrophages lacking both PLCß2 and PLCß3, but it was fully reconstituted following transduction with PLCß3 alone. Mechanisms of PLCß-mediated synergy were further explored in NIH-3T3 cells, which express little if any PLCß2. RNAi-mediated knockdown of endogenous PLCßs demonstrated that synergy in these cells was dependent on PLCß3, but PLCß1 and PLCß4 did not contribute, and overexpression of either isoform inhibited Ca(2+) synergy. When synergy was blocked by RNAi of endogenous PLCß3, it could be reconstituted by expression of either human PLCß3 or mouse PLCß2. In contrast, it could not be reconstituted by human PLCß3 with a mutation of the Y box, which disrupted activation by Gßγ, and it was only partially restored by human PLCß3 with a mutation of the C terminus, which partly disrupted activation by Gα(q). Thus, both Gßγ and Gα(q) contribute to activation of PLCß3 in cells for Ca(2+) synergy. We conclude that Ca(2+) synergy between Gα(i)-coupled and Gα(q)-coupled receptors requires the direct action of both Gßγ and Gα(q) on PLCß and is mediated primarily by PLCß3, although PLCß2 is also competent.


Subject(s)
Calcium Signaling/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Phospholipase C beta/metabolism , Animals , Complement C5a/metabolism , Humans , Macrophages/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mutagenesis , NIH 3T3 Cells , Phospholipase C beta/genetics , RNA, Small Interfering , Receptors, Purinergic P2/metabolism , Uridine Diphosphate/metabolism
2.
J Leukoc Biol ; 87(6): 1041-57, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200401

ABSTRACT

Clostridium difficile toxins cause acute colitis by disrupting the enterocyte barrier and promoting inflammation. ToxB from C. difficile inactivates Rho family GTPases and causes release of cytokines and eicosanoids by macrophages. We studied the effects of ToxB on GPCR signaling in murine RAW264.7 macrophages and found that ToxB elevated Ca(2+) responses to Galphai-linked receptors, including the C5aR, but reduced responses to Galphaq-linked receptors, including the UDP receptors. Other Rho inhibitors also reduced UDP Ca(2+) responses, but they did not affect C5a responses, suggesting that ToxB inhibited UDP responses by inhibiting Rho but enhanced C5a responses by other mechanisms. By using PLCbeta isoform-deficient BMDM, we found that ToxB inhibited Ca(2+) signaling through PLCbeta4 but enhanced signaling through PLCbeta3. Effects of ToxB on GPCR Ca(2+) responses correlated with GPCR use of PLCbeta3 versus PLCbeta4. ToxB inhibited UDP Ca(2+) signaling without reducing InsP3 production or the sensitivity of cellular Ca(2+) stores to exogenous InsP3, suggesting that ToxB impairs UDP signaling at the level of InsP3/Ca(2+)coupling. In contrast, ToxB elevated InsP3 production by C5a, and the enhancement of Ca(2+) signaling by C5a was prevented by inhibition of PLA(2) or 5-LOX but not COX, implicating LTs but not prostanoids in the mechanism. In sum, ToxB has opposing, independently regulated effects on Ca(2+) signaling by different GPCR-linked PLCbeta isoforms in macrophages.


Subject(s)
Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Calcium/metabolism , Macrophages/drug effects , Phospholipase C beta/physiology , Phospholipases A2/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Blotting, Western , Cells, Cultured , Complement C5a/pharmacology , Cytoskeleton/metabolism , Female , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Protein Isoforms , Signal Transduction , Uridine Diphosphate/pharmacology , rho GTP-Binding Proteins/genetics
3.
J Biol Chem ; 283(25): 17351-61, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18411281

ABSTRACT

Studies in fibroblasts, neurons, and platelets have demonstrated the integration of signals from different G protein-coupled receptors (GPCRs) in raising intracellular free Ca(2+). To study signal integration in macrophages, we screened RAW264.7 cells and bone marrow-derived macrophages (BMDM) for their Ca(2+) response to GPCR ligands. We found a synergistic response to complement component 5a (C5a) in combination with uridine 5'-diphosphate (UDP), platelet activating factor (PAF), or lysophosphatidic acid (LPA). The C5a response was Galpha(i)-dependent, whereas the UDP, PAF, and LPA responses were Galpha(q)-dependent. Synergy between C5a and UDP, mediated by the C5a and P2Y6 receptors, required dual receptor occupancy, and affected the initial release of Ca(2+) from intracellular stores as well as sustained Ca(2+) levels. C5a and UDP synergized in generating inositol 1,4,5-trisphosphate, suggesting synergy in activating phospholipase C (PLC) beta. Macrophages expressed transcripts for three PLCbeta isoforms (PLCbeta2, PLCbeta3, and PLCbeta4), but GPCR ligands selectively used these isoforms in Ca(2+) signaling. C5a predominantly used PLCbeta3, whereas UDP used PLCbeta3 but also PLCbeta4. Neither ligand required PLCbeta2. Synergy between C5a and UDP likewise depended primarily on PLCbeta3. Importantly, the Ca(2+) signaling deficiency observed in PLCbeta3-deficient BMDM was reversed by re-constitution with PLCbeta3. Neither phosphatidylinositol (PI) 3-kinase nor protein kinase C was required for synergy. In contrast to Ca(2+), PI 3-kinase activation by C5a was inhibited by UDP, as was macropinocytosis, which depends on PI 3-kinase. PLCbeta3 may thus provide a selective target for inhibiting Ca(2+) responses to mediators of inflammation, including C5a, UDP, PAF, and LPA.


Subject(s)
Calcium/metabolism , Complement C5a/chemistry , Macrophages/metabolism , Phospholipase C beta/metabolism , Uridine Diphosphate/chemistry , Animals , Humans , Kinetics , Ligands , Mice , Models, Biological , Phosphatidylinositol 3-Kinases/metabolism , Pinocytosis , Protein Isoforms , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...