Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 351(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29323750

ABSTRACT

A series of new indole derivatives 1-18 was synthesized and tested for their cytotoxic activity on a panel of 60 tumor cell lines. Additionally, molecular docking was carried out to study their binding pattern and binding affinity in the VEGFR-2 active site using sorafenib as a reference VEGFR-2 inhibitor. Based on the molecular docking results, compounds 5a, 5b, 6, 7, 14b, 18b, and 18c were selected to be evaluated for their VEGFR-2 inhibitory activity. Compound 18b exhibited a broad-spectrum antiproliferative activity on 47 cell lines, with GI % ranging from 31 to 82.5%. Moreover, compound 18b was the most potent VEGFR-2 inhibitor with an IC50 value of 0.07 µM, which is more potent than that of sorafenib (0.09 µM). A molecular docking study attributed the promising activity of this series to their hydrophobic interaction with the VEGFR-2 binding site hydrophobic side chains and their hydrogen bonding interaction with the key amino acids Glu885 and/or Asp1046.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Indoles/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Arch Pharm (Weinheim) ; 349(3): 202-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26806115

ABSTRACT

2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (1) condensed with carbaldehydes 2a,b to give the respective thienopyrimidines (3a,b), which reacted with phosphoryl chloride and hydrazine hydrate to afford the respective pyrimidinohydrazines (4a,b). Compound 4a condensed with acetophenone under Vilsmeier conditions to afford the formylated pyrazolopyrimidine 6. Condensation of 4a with active methylenes produced the respective pyrazolopyrimidines (7-11). Besides, 4a condensed with succinic anhydride and with phthalic anhydride, yielding the pyrrolidine-2,5-dione 12 and the isoindoline-1,3-dione 13, respectively. Moreover, 4a reacted with isatin to afford the hydrazono-indolin-2-one 14. Structural elucidations for the new thienopyrimidines were based upon compatible analytical and spectroscopic results. Eleven of the new compounds were tested and found active against influenza A neuraminidase virus (H3N2). Compounds 12 and 13 were the most potent.


Subject(s)
Antiviral Agents/chemistry , Cysteine Endopeptidases , Neuraminidase/antagonists & inhibitors , Pyrimidines/chemistry , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Influenza A Virus, H3N2 Subtype/enzymology , Neuraminidase/chemistry , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Viral Proteins/chemistry
3.
Eur J Med Chem ; 47(1): 387-98, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22119129

ABSTRACT

The starting material, 4-(1-indol-2-yl)phenol 1 was obtained via Fischer synthesis. Vilsmeir Haack(')s formylation of 1 gave the carboxaldehyde derivative 2 which was subjected to different reactions affording the 3-substituted compounds 3-10. Compound 1 reacted with halo esters to give 11 and 12a,b. The reaction of 12a with various amino derivatives gave compounds 13-16. The hydrazide derivative 15a reacted with 1,3-diketones, ethyl acetoacetate and aromatic carboxylic acid derivatives to give 17a,b, 18 and 19a-e, respectively. Antitumor activity of target compounds were tested against breast cancer cell lines (MCF-7) and (MDA-MB-231). The most potent compound was 3e with IC(50) = 1.60 nM against (MCF-7). Docking was performed on colchicine binding site of tubulin to study the binding mode of the designed compounds.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Models, Molecular , Antineoplastic Agents/chemistry , Binding Sites , Cell Line, Tumor , Colchicine/metabolism , Humans , Indoles/chemistry , Inhibitory Concentration 50 , Tubulin/chemistry , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...