Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 444(Pt A): 130391, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36410245

ABSTRACT

Recent results revealed that considerable Pb accumulation in plants is possible under specific soil conditions that make Pb phytoavailable. In this review, the sources and transformations of Pb in soils, the interaction of Pb with bacteria and specifically the microbiota in the soil, factors and mechanisms of Pb uptake, translocation and accumulation in plants and Pb toxicity in living organisms are comprehensively elaborated. Specific adsorption and post-adsorption transformations of Pb in soil are the main mechanisms affecting the mobility, bioavailability, and toxicity of Pb. The adsorption ability of Pb largely depends on the composition and properties of soils and environmental conditions. Microbial impact on Pb mobility in soil and bioavailability as well as bacterial resistance to Pb are considered. Specific mechanisms conferring Pb-resistance, including Pb-efflux, siderophores, and EPS, have been identified. Pathways of Pb entry into plants as well as mechanisms of in planta Pb transport are poorly understood. Available evidence suggests the involvement of Ca transporters, organic acids and the phytochelatin pathway in Pb transport, mobility and detoxification, respectively.


Subject(s)
Microbiota , Soil , Lead/toxicity , Biological Availability , Adsorption
2.
Eval Program Plann ; 92: 102066, 2022 06.
Article in English | MEDLINE | ID: mdl-35298956

ABSTRACT

This paper presents a case example of the Indigenous Evaluation Framework as applied to a science, technology, engineering, and mathematics (STEM) education pilot program. Indigenous methodologies include knowledge and data that are inclusive of historically marginalized groups, are highly meaningful, valid, and useful for all. A paradigm shift from Western evaluation methodologies to Indigenous evaluation is necessary when evaluating STEM programs that are committed to increasing recruitment, retention, and graduation of students from historically marginalized groups. This paper describes the use of the Indigenous Evaluation Framework during the first two years of the newly created Environmental Stewardship of Indigenous Lands program at the University of Colorado Denver. We discuss the importance of the Indigenous Evaluation Framework and how it informs the development and continued improvements to the program that also provides agency to program leads and participants.


Subject(s)
Engineering , Technology , Engineering/education , Humans , Mathematics , Program Evaluation , Technology/education , Universities
3.
Microb Ecol ; 79(3): 562-575, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31446448

ABSTRACT

Denitrifying microbial communities play a central role in the nitrogen cycle, contribute to greenhouse gas production, and provide ecosystem services through the mitigation of nitrogen pollution. The impacts of human-induced acid mine drainage (AMD) and naturally occurring acid rock drainage (ARD), both characterized by low pH and high metal concentrations, on denitrifying microbial communities is not well understood. This study examined denitrifying microbes within sediments impacted by acidic and metal-rich AMD or ARD in the Iron Springs Mining District (10 sites across four regions over four time points) located in Southwest Colorado, USA. Denitrification functional gene sequences (nirS and nirK coding for nitrite reductase) had a high number of observed OTUs (260 for nirS and 253 for nirK) and were observed at sites with pH as low as 3.5 and metals > 2 mg/L (including aluminum, iron, manganese, strontium, and zinc). A majority of the nirK and nirS OTUs (> 60%) were present in only one sampling region. Approximately 8% of the nirK and nirS OTUs had a more cosmopolitan distribution with presence in three or more regions. Phylogenetically related OTUs were found across sites with very different chemistry. The overall community structure for nirK and nirS genes was correlated to conductivity and calcium (respectively), which may suggest that conductivity may play an important role in shaping the distribution of nirK- and nirS-type denitrifiers. Overall, these findings improve upon our understanding of the potential for denitrification within an ecosystem impacted by AMD or ARD and provide a foundation for future research to understand the rates and physiology of denitrifying organisms in these systems.


Subject(s)
Bacteria/enzymology , Genes, Bacterial , Geologic Sediments/microbiology , Mining , Nitrite Reductases/analysis , Bacteria/classification , Bacteria/genetics , Colorado , Denitrification , Hydrogen-Ion Concentration , Microbiota
4.
Front Microbiol ; 8: 2136, 2017.
Article in English | MEDLINE | ID: mdl-29209281

ABSTRACT

Extremely acidic and metal-rich acid mine drainage (AMD) waters can have severe toxicological effects on aquatic ecosystems. AMD has been shown to completely halt nitrification, which plays an important role in transferring nitrogen to higher organisms and in mitigating nitrogen pollution. We evaluated the gene abundance and diversity of nitrifying microbes in AMD-impacted sediments: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). Samples were collected from the Iron Springs Mining District (Ophir, CO, United States) during early and late summer in 2013 and 2014. Many of the sites were characterized by low pH (<5) and high metal concentrations. Sequence analyses revealed AOA genes related to Nitrososphaera, Nitrosotalea, and Nitrosoarchaeum; AOB genes related to Nitrosomonas and Nitrosospira; and NOB genes related to Nitrospira. The overall abundance of AOA, AOB and NOB was examined using quantitative PCR (qPCR) amplification of the amoA and nxrB functional genes and 16S rRNA genes. Gene copy numbers ranged from 3.2 × 104 - 4.9 × 107 archaeal amoA copies ∗ µg DNA-1, 1.5 × 103 - 5.3 × 105 AOB 16S rRNA copies ∗ µg DNA-1, and 1.3 × 106 - 7.7 × 107Nitrospira nxrB copies ∗ µg DNA-1. Overall, Nitrospira nxrB genes were found to be more abundant than AOB 16S rRNA and archaeal amoA genes in most of the sample sites across 2013 and 2014. AOB 16S rRNA and Nitrospira nxrB genes were quantified in sediments with pH as low as 3.2, and AOA amoA genes were quantified in sediments as low as 3.5. Though pH varied across all sites (pH 3.2-8.3), pH was not strongly correlated to the overall community structure or relative abundance of individual OTUs for any gene (based on CCA and Spearman correlations). pH was positivity correlated to the total abundance (qPCR) of AOB 16S rRNA genes, but not for any other genes. Metals were not correlated to the overall nitrifier community composition or abundance, but were correlated to the relative abundances of several individual OTUs. These findings extend our understanding of the distribution of nitrifying microbes in AMD-impacted systems and provide a platform for further research.

5.
Microbiome ; 3: 6, 2015.
Article in English | MEDLINE | ID: mdl-25815185

ABSTRACT

BACKGROUND: Triclosan is a widely used antimicrobial compound and emerging environmental contaminant. Although the role of the gut microbiome in health and disease is increasingly well established, the interaction between environmental contaminants and host microbiome is largely unexplored, with unknown consequences for host health. This study examined the effects of low, environmentally relevant levels of triclosan exposure on the fish gut microbiome. Developing fathead minnows (Pimephales promelas) were exposed to two low levels of triclosan over a 7-day exposure. Fish gastrointestinal tracts from exposed and control fish were harvested at four time points: immediately preceding and following the 7-day exposure and after 1 and 2 weeks of depuration. RESULTS: A total of 103 fish gut bacterial communities were characterized by high-throughput sequencing and analysis of the V3-V4 region of the 16S rRNA gene. By measures of both alpha and beta diversity, gut microbial communities were significantly differentiated by exposure history immediately following triclosan exposure. After 2 weeks of depuration, these differences disappear. Independent of exposure history, communities were also significantly structured by time. This first detailed census of the fathead minnow gut microbiome shows a bacterial community that is similar in composition to those of zebrafish and other freshwater fish. Among the triclosan-resilient members of this host-associated community are taxa associated with denitrification in wastewater treatment, taxa potentially able to degrade triclosan, and taxa from an unstudied host-associated candidate division. CONCLUSIONS: The fathead minnow gut microbiome is rapidly and significantly altered by exposure to low, environmentally relevant levels of triclosan, yet largely recovers from this short-term perturbation over an equivalently brief time span. These results suggest that even low-level environmental exposure to a common antimicrobial compound can induce significant short-term changes to the gut microbiome, followed by restoration, demonstrating both the sensitivity and resilience of the gut flora to challenges by environmental toxicants. This short-term disruption in a developing organism may have important long-term consequences for host health. The identification of multiple taxa not often reported in the fish gut suggests that microbial nitrogen metabolism in the fish gut may be more complex than previously appreciated.

6.
Bioresour Technol ; 105: 60-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22178493

ABSTRACT

The low conductivity and alkalinity in municipal wastewater significantly limit power production from microbial fuel cells (MFCs). This study integrated desalination with wastewater treatment and electricity production in a microbial desalination cell (MDC) by utilizing the mutual benefits among the above functions. When using wastewater as the sole substrate, the power output from the MDC (8.01 W/m(3)) was four times higher than a control MFC without desalination function. In addition, the MDC removed 66% of the salts and improved COD removal by 52% and Coulombic efficiency by 131%. Desalination in MDCs improved wastewater characteristics by increasing the conductivity by 2.5 times and stabilizing anolyte pH, which therefore reduced system resistance and maintained microbial activity. Microbial community analysis revealed a more diverse anode microbial structure in the MDC than in the MFC. The results demonstrated that MDC can serve as a viable option for integrated wastewater treatment, energy production, and desalination.


Subject(s)
Water Purification/methods , Water/analysis , Bioelectric Energy Sources , Biofilms , Biotechnology/methods , Electrodes , Electrolytes , Energy-Generating Resources , Equipment Design , Hydrogen-Ion Concentration , Models, Statistical , Salts/analysis , Time Factors
7.
J Insect Physiol ; 53(12): 1262-75, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17706663

ABSTRACT

The success of biological control is partly mediated by the longevity and reproductive success of beneficial insects. Availability of nectar and honeydew can improve the nutrition of parasitic insects, and thereby increase their longevity and realized fecundity. The egg parasitoid, Anaphes iole, showed strong gustatory perception of trehalulose, a carbohydrate found in homopteran honeydew. Chromatographic analysis demonstrated that enzymatic hydrolysis of sucrose, a common nectar sugar, proceeded at a faster rate than that of melezitose, a sugar common in aphid honeydew. A long-term bioassay showed that longevity was greater at 20 degrees C than at 27 degrees C, and at both temperatures survival was generally greatest for wasps provisioned with the three major nectar sugars, sucrose, glucose, and fructose. Patterns of food acceptance and utilization showed that A. iole accepted and utilized a broad range of sugars found in nature, including those found in nectar as well as honeydew. Glucose, fructose, and several oligosaccharides composed of these monosaccharide units appear to be more suitable for A. iole than other sugars tested. Evidence suggests that individual fitness benefits afforded by food sources are important for a time-limited parasitoid, and that continued investigations on the interface between nutrition and biological control are warranted for A. iole.


Subject(s)
Ecosystem , Feeding Behavior/physiology , Food , Hymenoptera/physiology , Parasites/physiology , Animals , Carbohydrates , Female , Hymenoptera/metabolism , Longevity , Male , Perception , Reproduction
8.
J Basic Microbiol ; 46(3): 196-202, 2006.
Article in English | MEDLINE | ID: mdl-16721879

ABSTRACT

Microbial growth can be described using models derived by differential equations, but available mathematical models have yet to adequately describe lag phase related cell growth or cell mortality in response to chemical toxicity. Lag phase cell behavior, however, dictates the onset of exponential growth and the number of actively growing cells available to initiate exponential growth, important factors in the success of remediation efforts. In this study, a five-parameter polynomial ratio (PR) model was used to characterize the growth, from lag through stationary phase, of the yeast Saccharomyces cerevisiae in response to cadmium toxicity. The PR model used in this study has the advantages over standard mathematical models in the ability to represent the initial cell mortality observed when S. cerevisiae is exposed to increasing cadmium levels, up to 12 mg/l Cd, as well as following cell recovery and growth to stationary levels.


Subject(s)
Models, Biological , Saccharomyces cerevisiae/growth & development , Cadmium , Culture Media , Mathematics
9.
Biodegradation ; 17(4): 379-87, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16477362

ABSTRACT

We examined cadmium and lead resistance in Pseudomonas sp. S8A, an isolate obtained from mine tailings-contaminated soil. Resistant to soluble metal concentrations up to 200 mg l(-1) cadmium and 300 mg l(-1) lead, S8A produced both exopolymer and biosurfactant. Upon growth, this pseudomonad diverged into two morphologically distinct colony subtypes; small and round or large and flat. In the presence of lead and in the no metal control the large morphotype appeared only in late stationary phase. With cadmium the large morphotype appeared immediately following exposure. Results show that the large morphotype produced greater amounts of surfactant than the small morphotype, suggesting a unique subpopulation response to cadmium toxicity. Results also indicate that an unidentified 28 kDa protein was expressed following exposure to >10 mg l(-1) cadmium. This study demonstrates new links between surfactant production, differential subpopulation response and metal exposure.


Subject(s)
Biodegradation, Environmental , Cadmium/metabolism , Lead/metabolism , Pseudomonas/metabolism , Cadmium/chemistry , Environmental Exposure , Environmental Monitoring , Metals , Plasmids/metabolism , Polymers/chemistry , Soil , Soil Microbiology , Soil Pollutants/chemistry , Surface-Active Agents/chemistry , Time Factors
10.
J Insect Sci ; 5: 29, 2005 Nov 04.
Article in English | MEDLINE | ID: mdl-17119611

ABSTRACT

The life history of the shield-backed bug, Pachycoris stallii Uhler (Heteroptera: Scutelleridae), immatures was studied on its host plant, Croton californicus Muell.-Arg. (Euphorbiaceae), in Baja California Sur, Mexico. Immature stages are described and illustrated. Pachycoris stallii is bi- or multivoltine and occurs in xeric areas with sandy soil where it is rarely encountered away from C. californicus. Nymphs and adults feed on seeds within C. californicus fruit. Bugs oviposit on the underside of leaves, and females guard their eggs and first-instar nymphs from natural enemies. Embryonic orientation of prolarvae is nonrandom; each embryo is oriented with its venter directed toward the ground. This orientation may facilitate aggregation of first instars. The longitudinal axes of eggs are always oriented upward at about a 16 degree angle of deviation from a line perpendicular to the leaf surface. This is the first recorded observation of this phenomenon in Pentatomoidea. Experimental removal of females guarding first instars results in 100% loss of nymphs, and this is attributed to disruption of the aggregative behavior of nymphs. Maternal guarding appears to be a net benefit to P. stallii, despite possible costs to the brooding female.


Subject(s)
Behavior, Animal/physiology , Heteroptera/physiology , Animals , Female , Heteroptera/ultrastructure , Life Cycle Stages , Nymph , Ovum/ultrastructure
11.
Environ Health Perspect ; 110 Suppl 6: 943-6, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12634123

ABSTRACT

Soils co-contaminated with metals and organics present special problems for remediation. Metal contamination can delay or inhibit microbial degradation of organic pollutants such that for effective in situ biodegradation, bioaugmentation is necessary. We monitored the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) or 3-chlorobenzoate (3-CB) in two different soils with and without cadmium (Cd) contamination. Additionally, we evaluated the ability of bioaugmentation to enhance organic degradation in these co-contaminated soils. Finally, we determined whether enhanced degradation was due to survival of the introduced organism (cell bioaugmentation) or plasmid transfer to indigenous microbial populations (gene bioaugmentation). In Brazito soil, dual inoculation with a Cd-resistant bacterium plus a known 2,4-D-degrading bacterium, Ralstonia eutropha JMP134, enhanced 2,4-D degradation. Escherichia coli D11, which lacks chromosomal genes necessary for complete 2,4-D mineralization, was used for gene bioaugmentation in Madera soil. Significant gene transfer of the plasmid to the indigenous populations was observed, and the rate of 2,4-D degradation was enhanced relative to that of controls. Cell bioaugmentation was further demonstrated when (Comamonas testosteroni was used to enhance biodegradation of 3-CB in Madera soil. In this case no transfer of plasmid pBRC60 to indigenous soil recipients was observed. For the Madera soil, nonbioaugmented samples ultimately showed complete 2,4-D degradation. In contrast, nonbioaugmented Brazito soils showed incomplete 2,4-D degradation. These studies are unique in showing that both cell bioaugmentation and gene bioaugmentation can be effective in enhancing organic degradation in co-contaminated soils. Ultimately, the bioaugmentation strategy may depend on the degree of contamination and the time frame available for remediation.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/metabolism , Chlorobenzoates/metabolism , Comamonas testosteroni/genetics , Cupriavidus necator/genetics , Escherichia coli/genetics , Genetic Engineering , Herbicides/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Cadmium/adverse effects , Comamonas testosteroni/physiology , Cupriavidus necator/physiology , Escherichia coli/physiology , Plasmids , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...