Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 6803, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321946

ABSTRACT

Aedes aegypti is the main vector of arboviral diseases such as dengue, chikungunya and Zika. A key feature for disease transmission modeling and vector control planning is adult mosquito dispersal. We studied Ae aegypti adult dispersal by conducting a mark-capture study of naturally occurring Ae. aegypti from discarded containers found along a canal that divided two residential communities in Donna, Texas, USA. Stable isotopes were used to enrich containers with either 13C or 15N. Adult mosquitoes were collected outdoors in the yards of households throughout the communities with BG Sentinel 2 traps during a 12-week period. Marked mosquito pools with stable isotopes were used to estimate the mean distance travelled using three different approaches (Net, Strip or Circular) and the probability of detecting an isotopically marked adult at different distances from the larval habitat of origin. We consistently observed, using the three approaches that male (Net: 220 m, Strip: 255 m, Circular: 250 m) Ae. aegypti dispersed further in comparison to gravid (Net: 135 m, Strip: 176 m, Circular: 189 m) and unfed females (Net: 192 m, Strip: 213 m, Circular: 198 m). We also observed that marked male capture probability slightly increased with distance, while, for both unfed and gravid females, such probability decreased with distance. Using a unique study design documenting adult dispersal from natural larval habitat, our results suggest that Ae. aegypti adults disperse longer distances than previously reported. These results may help guide local vector control authorities in their fight against Ae. aegypti and the diseases it transmits, suggesting coverage of 200 m for the use of insecticides and innovative vector control tools.


Subject(s)
Carbon Isotopes/metabolism , Ecosystem , Environment , Mosquito Control/methods , Nitrogen Isotopes/metabolism , Algorithms , Animals , Chikungunya Fever/prevention & control , Chikungunya Fever/transmission , Chikungunya Fever/virology , Dengue/prevention & control , Dengue/transmission , Dengue/virology , Female , Humans , Insecticides/pharmacology , Male , Models, Theoretical , Mosquito Control/instrumentation , Mosquito Vectors/drug effects , Mosquito Vectors/metabolism , Mosquito Vectors/virology , Texas , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zika Virus Infection/virology
2.
J Med Entomol ; 57(2): 649-652, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31751467

ABSTRACT

The use of stable isotope enrichment to mark mosquitoes has provided a tool to study the biology of vector species. In this study, we evaluated isotopic marking of Aedes aegypti (L.) (Diptera: Culicidae) in a laboratory setting. We determined the optimal dosage for marking adult Ae. aegypti mosquitoes with 13C and 15N. Additionally, Ae. aegypti mosquitoes were single and dually marked with 13C and 15N for up to 60 d postemergence without changes to adult body size or transgenerational marking. This report adds to the growing literature that explores the use of alternative marking methods for ecological and vector biology studies.


Subject(s)
Aedes , Carbon Isotopes/analysis , Entomology/methods , Mosquito Control/methods , Mosquito Vectors , Nitrogen Isotopes/analysis , Animals , Ecology/methods , Female , Male
3.
Sci Adv ; 5(8): eaaw4513, 2019 08.
Article in English | MEDLINE | ID: mdl-31457086

ABSTRACT

Although the expectation of lack of resilience of seamount vulnerable marine ecosystems has become a paradigm in seamount ecology and a tenet of fisheries management, recovery has not been tested on time scales >10 years. The Northwestern Hawaiian Ridge and Emperor Seamounts have experienced the highest documented fish and invertebrate seamount fisheries takes in the world. Surveys show that, despite visible evidence of substantial historic fishing pressure, a subset of these seamounts that have been protected for >30 years showed multiple signs of recovery including corals regrowing from fragments and higher abundances of benthic megafauna than Still Trawled sites. Contrary to expectations, these results show that, with long-term protection, some recovery of seamount deep-sea coral communities may be possible on 30- to 40-year time scales. The current practice of allowing continued bottom-contact fishing at heavy trawled sites may cause damage to remnant populations, which likely play a critical role in recovery.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Anthozoa/physiology , Environmental Monitoring , Fisheries , Hawaii , Time Factors
4.
Parasit Vectors ; 12(1): 411, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31439006

ABSTRACT

BACKGROUND: Stable isotope labeling is a promising method for use in insect mark-capture and dispersal studies. Culicoides biting midges, which transmit several important animal pathogens, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), are small flies that develop in various semi-aquatic habitats. Previous Culicoides dispersal studies have suffered from the limitations of other labeling techniques, and an inability to definitively connect collected adult midges to specific immature development sites. RESULTS: Adult C. sonorensis were successfully labeled with 13C and 15N stable isotopes as larvae developing in a semi-aquatic mud substrate in the laboratory. High and low-dose isotope treatments for both elements significantly enriched midges above the background isotope levels of unenriched controls. Enrichment had no effect on C. sonorensis survival, though a slight (~ 5 day) delay in emergence was observed, and there was no significant effect of pool size on 13C or 15N enrichment levels. CONCLUSIONS: Stable isotope labeling is life-long, and does not interfere with natural insect behaviors. Stable isotope enrichment using 13C or 15N shows promise for Culicoides dispersal studies in the field. This method can be used to identify adult dispersal from larval source habitat where a midge developed. It may be possible to detect a single enriched midge in a pool of unenriched individuals, though further testing is needed to confirm the sensitivity of this method.


Subject(s)
Animal Distribution , Ceratopogonidae/physiology , Insect Vectors/physiology , Isotope Labeling , Animals , Carbon Isotopes , Ecosystem , Larva , Nitrogen Isotopes
5.
J Environ Radioact ; 187: 122-132, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29452767

ABSTRACT

Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope variability captured in proteinaceous deep-sea corals is a promising geochronometer as well as an emerging tracer for continental material flux.


Subject(s)
Anthozoa/chemistry , Iodine Radioisotopes/analysis , Nuclear Weapons , Water Pollutants, Radioactive/analysis , Animals , Anthozoa/metabolism , Iodine Radioisotopes/metabolism , Water Pollutants, Radioactive/metabolism
6.
Sci Rep ; 7(1): 5436, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710443

ABSTRACT

Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ωarag) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.


Subject(s)
Animal Distribution/physiology , Anthozoa/physiology , Calcium Carbonate/chemistry , Coral Reefs , Animals , Chlorophyll/chemistry , Ecosystem , Fisheries , Hawaii , Pacific Ocean , Water Movements
7.
PLoS Negl Trop Dis ; 11(1): e0005347, 2017 01.
Article in English | MEDLINE | ID: mdl-28135281

ABSTRACT

The dispersal patterns of mosquito vectors are important drivers of vector-borne infectious disease dynamics and understanding movement patterns is pivotal to devise successful intervention strategies. Here, we investigate the dispersal patterns of two globally important mosquito vectors, Aedes albopictus and Culex quinquefasciatus, by marking naturally-occurring larvae with stable isotopes (13C or 15N). Marked individuals were captured with 32 CDC light trap, 32 gravid trap, and 16 BG Sentinel at different locations within two-kilometer radii of six larval habitats enriched with either 13C or 15N. In total, 720 trap nights from July to August 2013 yielded a total of 32,140 Cx. quinquefasciatus and 7,722 Ae. albopictus. Overall, 69 marked female mosquitoes and 24 marked male mosquitoes were captured throughout the study period. The distance that Cx. quinquefasciatus females traveled differed for host-seeking and oviposition-seeking traps, with females seeking oviposition sites traveling further than those seeking hosts. Our analysis suggests that 41% of Cx. quinquefasciatus females that were host-seeking occurred 1-2 kilometer from their respective natal site, while 59% remained within a kilometer of their natal site. In contrast, 59% of Cx. quinquefasciatus females that were seeking oviposition sites occurred between 1-2 kilometer away from their larval habitat, while 15% occurred > 2 kilometer away from their natal site. Our analysis estimated that approximately 100% of Ae. albopictus females remained within 1 km of their respective natal site, with 79% occurring within 250m. In addition, we found that male Ae. albopictus dispersed farther than females, suggesting male-biased dispersal in this Ae. albopictus population. This study provides important insights on the dispersal patterns of two globally relevant vector species, and will be important in planning next generation vector control strategies that mitigate mosquito-borne disease through sterile insect techniques, novel Wolbachia infection, and gene drive strategies.


Subject(s)
Aedes/physiology , Animal Distribution , Culex/physiology , Mosquito Vectors/physiology , Animals , Female , Isotope Labeling , Larva/physiology , Male , Oviposition/physiology , Texas
8.
PLoS One ; 10(10): e0139904, 2015.
Article in English | MEDLINE | ID: mdl-26509818

ABSTRACT

The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.


Subject(s)
Ecosystem , Animals , Anthozoa , Biodiversity , Coral Reefs , New England
9.
J Med Entomol ; 52(5): 1043-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336205

ABSTRACT

Identification of the vertebrate hosts upon which hematophagous arthropods feed provides key information for understanding the ecology and transmission of vector-borne diseases. Bloodmeal analysis of ticks presents unique challenges relative to other vectors, given the long interval between bloodmeal acquisition and host-seeking, during which DNA degradation occurs. This study evaluates DNA-based and stable isotope-based bloodmeal analysis methodologies for the lone star tick, Amblyomma americanum (Linneaus, 1758), in an experimental study with chicken as the known host. We subjected ticks of different ages and environmental rearing conditions to three DNA-based approaches and a stable isotopic analysis, which relies on the natural variation of nitrogen ((15)N/(14)N) and carbon ((13)C/(12)C) isotopes. While all three DNA-based approaches were successful in identifying the bloodmeal host of the engorged nymphs, only the probe-based RT-PCR was able to detect host DNA in aged ticks, the success of which was low and inconsistent across age and rearing treatments. In contrast, the stable isotope analysis showed utility in determining the host across all ages of ticks when isotopic values of ticks were compared with a panel of candidate vertebrate species. There was a positive shift in both δ(13)C and δ(15)N in adult A. americanum until 34 wk postnymphal bloodmeal. Through analyzing the isotopic signatures of eight potential vertebrate host species, we determined that the magnitude of this isotopic shift that occurred with tick age was minor compared with the heterogeneity in the δ(15)N and δ(13)C signatures among species. These results suggest that stable isotopes are a useful tool for understanding tick-host interactions.


Subject(s)
Chickens/parasitology , Host-Parasite Interactions , Ixodidae/physiology , Parasitology/methods , Tick-Borne Diseases/transmission , Animals , Carbon Isotopes/analysis , DNA/analysis , Female , Ixodidae/growth & development , Male , Nitrogen Isotopes/analysis , Nymph/growth & development , Nymph/physiology , Real-Time Polymerase Chain Reaction , Tick-Borne Diseases/parasitology
10.
Proc Natl Acad Sci U S A ; 106(13): 5204-8, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19307564

ABSTRACT

Deep-sea corals are found on hard substrates on seamounts and continental margins worldwide at depths of 300 to approximately 3,000 m. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age dates from the deep water proteinaceous corals Gerardia sp. and Leiopathes sp. show that radial growth rates are as low as 4 to 35 mum year(-1) and that individual colony longevities are on the order of thousands of years. The longest-lived Gerardia sp. and Leiopathes sp. specimens were 2,742 years and 4,265 years, respectively. The management and conservation of deep-sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep-water fishing practices. In light of their unusual longevity, a better understanding of deep-sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea habitat-forming species.


Subject(s)
Anthozoa/physiology , Longevity , Animals , Anthozoa/growth & development , Biomass , Radiometric Dating
SELECTION OF CITATIONS
SEARCH DETAIL
...